GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 563, No. 7733 ( 2018-11), p. 710-713
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 13 ( 2020-03-31), p. 7255-7262
    Abstract: Disease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans , the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influenced whether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 51 ( 2006-12-19), p. 19368-19373
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 51 ( 2006-12-19), p. 19368-19373
    Abstract: The spread of highly pathogenic H5N1 avian influenza into Asia, Europe, and Africa has resulted in enormous impacts on the poultry industry and presents an important threat to human health. The pathways by which the virus has and will spread between countries have been debated extensively, but have yet to be analyzed comprehensively and quantitatively. We integrated data on phylogenetic relationships of virus isolates, migratory bird movements, and trade in poultry and wild birds to determine the pathway for 52 individual introduction events into countries and predict future spread. We show that 9 of 21 of H5N1 introductions to countries in Asia were most likely through poultry, and 3 of 21 were most likely through migrating birds. In contrast, spread to most (20/23) countries in Europe was most likely through migratory birds. Spread in Africa was likely partly by poultry (2/8 introductions) and partly by migrating birds (3/8). Our analyses predict that H5N1 is more likely to be introduced into the Western Hemisphere through infected poultry and into the mainland United States by subsequent movement of migrating birds from neighboring countries, rather than from eastern Siberia. These results highlight the potential synergism between trade and wild animal movement in the emergence and pandemic spread of pathogens and demonstrate the value of predictive models for disease control.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature, Springer Science and Business Media LLC, Vol. 566, No. 7742 ( 2019-2), p. E3-E3
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 48 ( 2014-12-02), p. 17278-17283
    Abstract: Populations of at least 20 asteroid species on the Northeast Pacific Coast have recently experienced an extensive outbreak of sea-star (asteroid) wasting disease (SSWD). The disease leads to behavioral changes, lesions, loss of turgor, limb autotomy, and death characterized by rapid degradation (“melting”). Here, we present evidence from experimental challenge studies and field observations that link the mass mortalities to a densovirus ( Parvoviridae ). Virus-sized material (i.e., 〈 0.2 μm) from symptomatic tissues that was inoculated into asymptomatic asteroids consistently resulted in SSWD signs whereas animals receiving heat-killed (i.e., control) virus-sized inoculum remained asymptomatic. Viral metagenomic investigations revealed the sea star-associated densovirus (SSaDV) as the most likely candidate virus associated with tissues from symptomatic asteroids. Quantification of SSaDV during transmission trials indicated that progression of SSWD paralleled increased SSaDV load. In field surveys, SSaDV loads were more abundant in symptomatic than in asymptomatic asteroids. SSaDV could be detected in plankton, sediments and in nonasteroid echinoderms, providing a possible mechanism for viral spread. SSaDV was detected in museum specimens of asteroids from 1942, suggesting that it has been present on the North American Pacific Coast for at least 72 y. SSaDV is therefore the most promising candidate disease agent responsible for asteroid mass mortality.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2004
    In:  Annals of the New York Academy of Sciences Vol. 1026, No. 1 ( 2004-10), p. 1-11
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 1026, No. 1 ( 2004-10), p. 1-11
    Abstract: A bstract : The last three decades have seen an alarming number of high‐profile outbreaks of new viruses and other pathogens, many of them emerging from wildlife. Recent outbreaks of SARS, avian influenza, and others highlight emerging zoonotic diseases as one of the key threats to global health. Similar emerging diseases have been reported in wildlife populations, resulting in mass mortalities, population declines, and even extinctions. In this paper, we highlight three examples of emerging pathogens: Nipah and Hendra virus, which emerged in Malaysia and Australia in the 1990s respectively, with recent outbreaks caused by similar viruses in India in 2000 and Bangladesh in 2004; West Nile virus, which emerged in the New World in 1999; and amphibian chytridiomycosis, which has emerged globally as a threat to amphibian populations and a major cause of amphibian population declines. We discuss a new, conservation medicine approach to emerging diseases that integrates veterinary, medical, ecologic, and other sciences in interdisciplinary teams. These teams investigate the causes of emergence, analyze the underlying drivers, and attempt to define common rules governing emergence for human, wildlife, and plant EIDs. The ultimate goal is a risk analysis that allows us to predict future emergence of known and unknown pathogens.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2004
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 27 ( 2012-07-03), p. 10942-10947
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 27 ( 2012-07-03), p. 10942-10947
    Abstract: Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing. The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2007
    In:  Nature Vol. 447, No. 7145 ( 2007-6), p. 710-713
    In: Nature, Springer Science and Business Media LLC, Vol. 447, No. 7145 ( 2007-6), p. 710-713
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2007
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2011
    In:  Science Vol. 334, No. 6054 ( 2011-10-21), p. 323-327
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 334, No. 6054 ( 2011-10-21), p. 323-327
    Abstract: Many invasive species that have been spread through the globalization of trade and travel are pathogens. A paradigmatic case is the introduction of West Nile virus (WNV) into North America in 1999. A decade of research on the ecology and evolution of WNV includes three findings that provide insight into the outcome of future pathogen introductions. First, WNV transmission in North America is highest in urbanized and agricultural habitats, in part because the hosts and vectors of WNV are abundant in human-modified areas. Second, after its introduction, the virus quickly adapted to infect local mosquito vectors more efficiently than the originally introduced strain. Third, highly focused feeding patterns of the mosquito vectors of WNV result in unexpected host species being important for transmission. This research provides a framework for predicting and preventing the emergence of foreign vector-borne pathogens.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2010
    In:  Annals of the New York Academy of Sciences Vol. 1195, No. 1 ( 2010-05), p. 113-128
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 1195, No. 1 ( 2010-05), p. 113-128
    Abstract: Influenza A virus infections result in ∼500,000 human deaths per year and many more sublethal infections. Wild birds are recognized as the ancestral host of influenza A viruses, and avian viruses have contributed genetic material to most human viruses, including subtypes H5N1 and H1N1. Thus, influenza virus transmission in wild and domestic animals and humans is intimately connected. Here we review how anthropogenic change, including human population growth, land use, climate change, globalization of trade, agricultural intensification, and changes in vaccine technology may alter the evolution and transmission of influenza viruses. Evidence suggests that viral transmission in domestic poultry, spillover to other domestic animals, wild birds and humans, and the potential for subsequent pandemic spread, are all increasing. We highlight four areas in need of research: drivers of viral subtype dynamics; ecological and evolutionary determinants of transmissibility and virulence in birds and humans; the impact of changing land use and climate on hosts, viruses, and transmission; and the impact of influenza viruses on wild bird hosts, including their ability to migrate while shedding virus.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...