GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 33 ( 2021-08-17)
    Abstract: The mechanosensitive channel of small conductance (MscS) protects bacteria against hypoosmotic shock. It can sense the tension in the surrounding membrane and releases solutes if the pressure in the cell is getting too high. The membrane contacts MscS at sensor paddles, but lipids also leave the membrane and move along grooves between the paddles to reside as far as 15 Å away from the membrane in hydrophobic pockets. One sensing model suggests that a higher tension pulls lipids from the grooves back to the membrane, which triggers gating. However, it is still unclear to what degree this model accounts for sensing and what contribution the direct interaction of the membrane with the channel has. Here, we show that MscS opens when it is sufficiently delipidated by incubation with the detergent dodecyl-β-maltoside or the branched detergent lauryl maltose neopentyl glycol. After addition of detergent-solubilized lipids, it closes again. These results support the model that lipid extrusion causes gating: Lipids are slowly removed from the grooves and pockets by the incubation with detergent, which triggers opening. Addition of lipids in micelles allows lipids to migrate back into the pockets, which closes the channel even in the absence of a membrane. Based on the distribution of the aliphatic chains in the open and closed conformation, we propose that during gating, lipids leave the complex on the cytosolic leaflet at the height of highest lateral tension, while on the periplasmic side, lipids flow into gaps, which open between transmembrane helices.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 37 ( 2014-09-16), p. 13457-13462
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 37 ( 2014-09-16), p. 13457-13462
    Abstract: The immune-regulatory cytokine IL-10 plays a central role during innate and adaptive immune responses. IL-10 is elevated in the serum and tissues of patients with systemic lupus erythematosus (SLE), an autoimmune disorder characterized by autoantibody production, immune-complex formation, and altered cytokine expression. Because of its B cell-promoting effects, IL-10 may contribute to autoantibody production and tissue damage in SLE. We aimed to determine molecular events governing T cell-derived IL-10 expression in health and disease. We link reduced DNA methylation of the IL10 gene with increased recruitment of Stat family transcription factors. Stat3 and Stat5 recruitment to the IL10 promoter and an intronic enhancer regulate gene expression. Both Stat3 and Stat5 mediate trans -activation and epigenetic remodeling of IL10 through their interaction with the histone acetyltransferase p300. In T cells from SLE patients, activation of Stat3 is increased, resulting in enhanced recruitment to regulatory regions and competitive replacement of Stat5, subsequently promoting IL-10 expression. A complete understanding of the molecular events governing cytokine expression will provide new treatment options in autoimmune disorders, including SLE. The observation that altered activation of Stat3 influences IL-10 expression in T cells from SLE patients offers molecular targets in the search for novel target-directed treatment options.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 40 ( 2009-10-06), p. 17123-17128
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 40 ( 2009-10-06), p. 17123-17128
    Abstract: Interleukin (IL)-10 is an immunoregulatory cytokine that is produced by diverse cell populations. Studies in mice suggest that the cellular source of IL-10 is a key determinant in various disease pathologies, yet little is known regarding the control of tissue-specific human IL-10 expression. To assess cell type-specific human IL-10 regulation, we created a human IL-10 transgenic mouse with a bacterial artificial chromosome (hIL10BAC) in which the IL10 gene is positioned centrally. Since human IL-10 is biologically active in the mouse, we could examine the in vivo capacity of tissue-specific human IL-10 expression to recapitulate IL-10-dependent phenotypes by reconstituting Il10 −/− mice (Il10 −/− /hIL10BAC). In response to LPS, Il10 −/− /hIL10BAC mice proficiently regulate IL-10-target genes and normalize sensitivity to LPS toxicity via faithful human IL-10 expression from macrophages and dendritic cells. However, in the Leishmania donovani model of pathogen persistence, Il10 −/− /hIL10BAC mice did not develop the characteristic IL-10 + IFN-γ + CD4 T cell subset thought to mediate persistence and, like Il10 −/− mice, cleared the parasites. Furthermore, the IL-10-promoting cytokine IL-27 failed to regulate transgenic human IL-10 production in CD4 + T cells in vitro which together suggests that the hIL10BAC encodes for weak T cell-specific IL-10 expression. Thus, the hIL10BAC mouse is a model of human gene structure and function revealing tissue-specific regulatory requirements for IL-10 expression which impacts disease outcomes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 41 ( 2012-10-09), p. 16606-16611
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 41 ( 2012-10-09), p. 16606-16611
    Abstract: Appropriate expression of IL-2 plays a central role during the priming and differentiation of T cells. A tight balance between IL-2 and the effector cytokine IL-17A is essential for immune homeostasis. Epigenetic mechanisms have been documented as a key component of cytokine regulation during lineage commitment. The molecular mechanisms that induce chromatin remodeling are less well understood. We investigated epigenetic regulators that mediate the diametric expression of IL-2 and IL-17A in naive, central memory, and effector memory CD4 + T cells. We demonstrate that cAMP response modulator (CREM)α contributes to epigenetic remodeling of IL2 in effector memory T cells through the recruitment of DNMT3a. CREMα also reduces CpG-DNA methylation of the IL17A promoter. CREMα expression is regulated at the epigenetic level by CpG-DNA methylation, which allows increased CREMα expression in effector memory CD4 + T cells. T cells from patients with systemic lupus erythematosus (SLE) express increased levels of CREMα and exhibit a phenotype that is similar to effector memory CD4 + T cells with epigenetically predetermined expression patterns of IL-2 and IL-17A. We conclude that CREMα mediates epigenetic remodeling of the IL2 and IL17A gene during T-cell differentiation in favor of effector memory T cells in health and disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...