GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 93, No. 24 ( 1996-11-26), p. 14053-14058
    Abstract: CD30 is a member of the tumor necrosis factor receptor superfamily, which can transduce signals for proliferation, death, or nuclear factor kappa B (NF-κB) activation. Investigation of CD30 signaling pathways using a yeast two-hybrid interaction system trapped a cDNA encoding the tumor necrosis factor receptor-associated factor (TRAF)-2 TRAF homology domain. TRAF-1 and TRAF-3 also interacted with CD30, and 〉 90% of in vitro -translated TRAF-1 or -2, or 50% of TRAF-3, bound to the CD30 cytoplasmic domain. TRAF-1, -2, and -3 bound mostly, but not exclusively, to the carboxyl-terminal 36 residues of CD30. The binding was strongly inhibited by a CD30 oligopeptide centered around a PXQXT (where X is any amino acid) motif shared with CD40 and the Epstein–Barr virus transforming protein LMP1, indicating that this motif in CD30 is an important determinant of TRAF-1, -2 or -3 interaction. At least 15% of TRAF-1, -2, or -3 associated with CD30 when coexpressed in 293 cells. The association was not affected by CD30 cross-linking. However, cross-linking of CD30 activated NF-κB. NF-κB activation was dependent on the carboxyl-terminal 36 amino acids of CD30 that mediate TRAF association. TRAF-2 has been previously shown to have a unique role in TRAF-mediated NF-κB activation, and NF-κB activation following CD30 cross-linking was blocked by a dominant negative TRAF-2 mutant. These data indicate that CD30 cross-linking-induced NF-κB activation is predominantly TRAF-2-mediated.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1996
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 11 ( 2007-03-13), p. 4594-4599
    Abstract: The kinase inhibitor imatinib mesylate targeting the oncoprotein Bcr-Abl has revolutionized the treatment of chronic myeloid leukemia (CML). However, even though imatinib successfully controls the leukemia in chronic phase, it seems not to be able to cure the disease, potentially necessitating lifelong treatment with the inhibitor under constant risk of relapse. On a molecular level, the cause of disease persistence is not well understood. Initial studies implied that innate features of primitive progenitor cancer stem cells may be responsible for the phenomenon. Here, we describe an assay using retroviral insertional mutagenesis (RIM) to identify genes contributing to disease persistence in vivo . We transplanted mice with bone marrow cells retrovirally infected with the Bcr-Abl oncogene and subsequently treated the animals with imatinib to select for leukemic cells in which the proviral integration had affected genes modulating the imatinib response. Southern blot analysis demonstrated clonal outgrowth of cells carrying similar integration sites. Candidate genes located near the proviral insertion sites were identified, among them the transcription factor RUNX3 . Proviral integration near the RUNX3 promoter induced RUNX3 expression, and Bcr-Abl-positive cell lines with stable or inducible expression of RUNX1 or RUNX3 were protected from imatinib-induced apoptosis. Furthermore, imatinib treatment selected for RUNX1-expressing cells in vitro and in vivo after infection of primary bone marrow cells with Bcr-Abl and RUNX1. Our results demonstrate the utility of RIM for probing molecular modulators of targeted therapies and suggest a role for members of the RUNX transcription factor family in disease persistence in CML patients.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 41 ( 2019-10-08), p. 20700-20706
    Abstract: Microbial invasion into the intestinal mucosa after allogeneic hematopoietic cell transplantation (allo-HCT) triggers neutrophil activation and requires antibiotic interventions to prevent sepsis. However, antibiotics lead to a loss of microbiota diversity, which is connected to a higher incidence of acute graft-versus-host disease (aGVHD). Antimicrobial therapies that eliminate invading bacteria and reduce neutrophil-mediated damage without reducing the diversity of the microbiota are therefore highly desirable. A potential solution would be the use of antimicrobial antibodies that target invading pathogens, ultimately leading to their elimination by innate immune cells. In a mouse model of aGVHD, we investigated the potency of active and passive immunization against the conserved microbial surface polysaccharide poly- N -acetylglucosamine (PNAG) that is expressed on numerous pathogens. Treatment with monoclonal or polyclonal antibodies to PNAG (anti-PNAG) or vaccination against PNAG reduced aGVHD-related mortality. Anti-PNAG treatment did not change the intestinal microbial diversity as determined by 16S ribosomal DNA sequencing. Anti-PNAG treatment reduced myeloperoxidase activation and proliferation of neutrophil granulocytes (neutrophils) in the ileum of mice developing GVHD. In vitro, anti-PNAG treatment showed high antimicrobial activity. The functional role of neutrophils was confirmed by using neutrophil-deficient LysM cre Mcl1 fl/fl mice that had no survival advantage under anti-PNAG treatment. In summary, the control of invading bacteria by anti-PNAG treatment could be a novel approach to reduce the uncontrolled neutrophil activation that promotes early GVHD and opens a new avenue to interfere with aGVHD without affecting commensal intestinal microbial diversity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...