GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 19 ( 2013-05-07)
    Abstract: The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 1 ( 2014-01-07), p. 63-68
    Abstract: Several superconducting transition temperatures in the range of 30–46 K were reported in the recently discovered intercalated FeSe system (A 1- x Fe 2- y Se 2 , A = K, Rb, Cs, Tl). Although the superconducting phases were not yet conclusively decided, more than one magnetic phase with particular orders of iron vacancy and/or potassium vacancy were identified, and some were argued to be the parent phase. Here we show the discovery of the presence and ordering of iron vacancy in nonintercalated FeSe (PbO-type tetragonal β -Fe 1- x Se). Three types of iron-vacancy order were found through analytical electron microscopy, and one was identified to be nonsuperconducting and magnetic at low temperature. This discovery suggests that the rich-phases found in A 1- x Fe 2- y Se 2 are not exclusive in Fe-Se and related superconductors. In addition, the magnetic β -Fe 1- x Se phases with particular iron-vacancy orders are more likely to be the parent phase of the FeSe superconducting system instead of the previously assigned β -Fe 1+ δ Te.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 29 ( 2004-07-20), p. 10572-10577
    Abstract: Saccharomyces cerevisiae Hop2 and Mnd1 are abundant meiosisspecific chromosomal proteins, and mutations in the corresponding genes lead to defects in meiotic recombination and in homologous chromosome interactions during mid-prophase. Analysis of various double mutants suggests that HOP2 , MND1 , and DMC1 act in the same genetic pathway for the establishment of close juxtaposition between homologous meiotic chromosomes. Biochemical studies indicate that Hop2 and Mnd1 proteins form a stable heterodimer with a higher affinity for double-stranded than single-stranded DNA, and that this heterodimer stimulates the strand assimilation activity of Dmc1 in vitro . Together, the genetic and biochemical results suggest that Hop2, Mnd1, and Dmc1 are functionally interdependent during meiotic DNA recombination.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 44 ( 2008-11-04), p. 17061-17066
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 44 ( 2008-11-04), p. 17061-17066
    Abstract: MicroRNAs (miRNAs) play an important role in posttranscriptional regulation of genes. We developed a method to predict human miRNAs without requiring cross-species conservation. We first identified lowly/moderately expressed tissue-selective genes using EST data and then identified overrepresented motifs of seven nucleotides in the 3′ UTRs of these genes. Using these motifs as potential target sites of miRNAs, we recovered more than two-thirds of the known human miRNAs. We then used those motifs that did not match any known human miRNA seed region to infer novel miRNAs. We predicted 36 new human miRNA genes with 44 mature forms and 4 novel alternative mature forms of 2 known miRNA genes when a stringent criterion was used and many more novel miRNAs when a less stringent criterion was used. We tested the expression of 11 predicted miRNAs in three human cell lines and found 5 of them expressed in all three cell lines and 1 expressed in one cell line. We selected 2 of them, P-2 and P-27–5p, to do functional validation, using their mimics and inhibitors and using both luciferase assay and Western blotting. These experiments provided strong evidence that both P-2 and P-27–5p are novel miRNAs and that CREB 3 L 3, which encodes cAMP-responsive element binding protein 3-like 3, is a target gene of P-2, whereas LAMB 3, which encodes laminin β3, is a target gene of P-27–5p.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 12 ( 2020-03-24), p. 6762-6770
    Abstract: Nematode-trapping fungi (NTF) are a group of specialized microbial predators that consume nematodes when food sources are limited. Predation is initiated when conserved nematode ascaroside pheromones are sensed, followed by the development of complex trapping devices. To gain insights into the coevolution of this interkingdom predator–prey relationship, we investigated natural populations of nematodes and NTF that we found to be ubiquitous in soils. Arthrobotrys species were sympatric with various nematode species and behaved as generalist predators. The ability to sense prey among wild isolates of Arthrobotrys oligospora varied greatly, as determined by the number of traps after exposure to Caenorhabditis elegans . While some strains were highly sensitive to C. elegans and the nematode pheromone ascarosides, others responded only weakly. Furthermore, strains that were highly sensitive to the nematode prey also developed traps faster. The polymorphic nature of trap formation correlated with competency in prey killing, as well as with the phylogeny of A. oligospora natural strains, calculated after assembly and annotation of the genomes of 20 isolates. A chromosome-level genome assembly and annotation were established for one of the most sensitive wild isolates, and deletion of the only G-protein β-subunit–encoding gene of A. oligospora nearly abolished trap formation. In summary, our study establishes a highly responsive A. oligospora wild isolate as a model strain for the study of fungus–nematode interactions and demonstrates that trap formation is a fitness character in generalist predators of the nematode-trapping fungus family.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 8 ( 2021-02-23)
    Abstract: Most eukaryotes possess two RecA-like recombinases (ubiquitous Rad51 and meiosis-specific Dmc1) to promote interhomolog recombination during meiosis. However, some eukaryotes have lost Dmc1. Given that mammalian and yeast Saccharomyces cerevisiae ( Sc ) Dmc1 have been shown to stabilize recombination intermediates containing mismatches better than Rad51, we used the Pezizomycotina filamentous fungus Trichoderma reesei to address if and how Rad51-only eukaryotes conduct interhomolog recombination in zygotes with high sequence heterogeneity. We applied multidisciplinary approaches (next- and third-generation sequencing technology, genetics, cytology, bioinformatics, biochemistry, and single-molecule biophysics) to show that T. reesei Rad51 ( Tr Rad51) is indispensable for interhomolog recombination during meiosis and, like Sc Dmc1, Tr Rad51 possesses better mismatch tolerance than Sc Rad51 during homologous recombination. Our results also indicate that the ancestral Tr Rad51 evolved to acquire Sc Dmc1-like properties by creating multiple structural variations, including via amino acid residues in the L1 and L2 DNA-binding loops.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 11 ( 2020-03-17), p. 6014-6022
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 11 ( 2020-03-17), p. 6014-6022
    Abstract: Fungal predatory behavior on nematodes has evolved independently in all major fungal lineages. The basidiomycete oyster mushroom Pleurotus ostreatus is a carnivorous fungus that preys on nematodes to supplement its nitrogen intake under nutrient-limiting conditions. Its hyphae can paralyze nematodes within a few minutes of contact, but the mechanism had remained unclear. We demonstrate that the predator–prey relationship is highly conserved between multiple Pleurotus species and a diversity of nematodes. To further investigate the cellular and molecular mechanisms underlying rapid nematode paralysis, we conducted genetic screens in Caenorhabditis elegans and isolated mutants that became resistant to P. ostreatus . We found that paralysis-resistant mutants all harbored loss-of-function mutations in genes required for ciliogenesis, demonstrating that the fungus induced paralysis via the cilia of nematode sensory neurons. Furthermore, we observed that P. ostreatus caused excess calcium influx and hypercontraction of the head and pharyngeal muscle cells, ultimately resulting in rapid necrosis of the entire nervous system and muscle cells throughout the entire organism. This cilia-dependent predatory mechanism is evolutionarily conserved in Pristionchus pacificus , a nematode species estimated to have diverged from C. elegans 280 to 430 million y ago. Thus, P. ostreatus exploits a nematode-killing mechanism that is distinct from widely used anthelmintic drugs such as ivermectin, levamisole, and aldicarb, representing a potential route for targeting parasitic nematodes in plants, animals, and humans.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...