GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 21 ( 2003-10-14), p. 12444-12449
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 21 ( 2003-10-14), p. 12444-12449
    Abstract: Amyloid-β (Aβ) peptides, consisting mainly of 40 and 42 aa (Aβ40 and Aβ42, respectively), are metabolites of the amyloid precursor protein and are believed to be major pathological determinants of Alzheimer's disease. The proteolytic cleavages that form the Aβ N and C termini are catalyzed by β-secretase and γ-secretase, respectively. Here we demonstrate that γ-secretase generation of Aβ in an N2a cell-free system is ATP dependent. In addition, the Abl kinase inhibitor imatinib mesylate (Gleevec, or STI571), which targets the ATP-binding site of Abl and several other tyrosine kinases, potently reduces Aβ production in the N2a cell-free system and in intact N2a cells. Both STI571 and a related compound, inhibitor 2, also reduce Aβ production in rat primary neuronal cultures and in vivo in guinea pig brain. STI571 does not inhibit the γ-secretase-catalyzed S3 cleavage of Notch-1. Furthermore, production of Aβ and its inhibition by STI571 were demonstrated to occur to similar extents in both Abl -/- and WT mouse fibroblasts, indicating that the effect of STI571 on Aβ production does not involve Abl kinase. The efficacy of STI571 in reducing Aβ without affecting Notch-1 cleavage may prove useful as a basis for developing novel therapies for Alzheimer's disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 6 ( 2006-02-07), p. 1941-1946
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 6 ( 2006-02-07), p. 1941-1946
    Abstract: Presenilin (PS1/PS2) is a major component of γ-secretase, the activity that mediates proteolysis of β-amyloid precursor protein to generate β-amyloid (Aβ). Here we demonstrate that PS1, through its loop region, binds to phospholipase D1 (PLD1), thereby recruiting it to the Golgi/trans-Golgi network. Overexpression of wild-type PLD1 reduces Aβ generation. Conversely, down-regulation of endogenous PLD1 by small hairpin RNA elevates Aβ production. The Aβ-lowering effect of PLD1 is independent of its ability to promote vesicular budding of β-amyloid precursor protein. The data indicate that overexpression of PLD1 decreases, and down-regulation of PLD1 increases, the catalytic activity, and the association of the subunits, of γ-secretase.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 6 ( 2006-02-07), p. 1936-1940
    Abstract: Presenilins (PS1/PS2) regulate proteolysis of β-amyloid precursor protein (βAPP) and affect its intracellular trafficking. Here, we demonstrate that a PS1-interacting protein, phospholipase D1 (PLD1), affects intracellular trafficking of βAPP. Overexpression of PLD1 in PS1wt cells promotes generation of βAPP-containing vesicles from the trans-Golgi network. Conversely, inhibition of PLD1 activity by 1-butanol decreases βAPP trafficking in both wt and PS1-deficient cells. The subcellular localization of PLD1 is altered, and PLD enzymatic activity is reduced in cells expressing familial Alzheimer’s disease (FAD) PS1 mutations compared with PS1wt cells. Overexpression of wt, but not catalytically inactive, PLD1 increases budding of βAPP-containing vesicles from the trans-Golgi network in FAD mutant cells. Surface delivery of βAPP is also increased by PLD1 in these cells. The impaired neurite outgrowth capacity in FAD mutant neurons was corrected by introducing PLD1 into these cells. The results indicate that PLD1 may represent a therapeutic target for rescuing compromised neuronal function in AD.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Vol. 370, No. 6517 ( 2020-11-06), p. 669-669
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 370, No. 6517 ( 2020-11-06), p. 669-669
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 38 ( 2015-09-22), p. 11965-11970
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 38 ( 2015-09-22), p. 11965-11970
    Abstract: The apolipoprotein E4 (ApoE4) allele is the strongest genetic risk factor for developing sporadic Alzheimer’s disease (AD). However, the mechanisms underlying the pathogenic nature of ApoE4 are not well understood. In this study, we have found that ApoE proteins are critical determinants of brain phospholipid homeostasis and that the ApoE4 isoform is dysfunctional in this process. We have found that the levels of phosphoinositol biphosphate (PIP 2 ) are reduced in postmortem human brain tissues of ApoE4 carriers, in the brains of ApoE4 knock-in (KI) mice, and in primary neurons expressing ApoE4 alleles compared with those levels in ApoE3 counterparts. These changes are secondary to increased expression of a PIP 2 -degrading enzyme, the phosphoinositol phosphatase synaptojanin 1 (synj1), in ApoE4 carriers. Genetic reduction of synj1 in ApoE4 KI mouse models restores PIP 2 levels and, more important, rescues AD-related cognitive deficits in these mice. Further studies indicate that ApoE4 behaves similar to ApoE null conditions, which fails to degrade synj1 mRNA efficiently, unlike ApoE3 does. These data suggest a loss of function of ApoE4 genotype. Together, our data uncover a previously unidentified mechanism that links ApoE4-induced phospholipid changes to the pathogenic nature of ApoE4 in AD.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...