GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 20 ( 2014-05-20)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 20 ( 2014-05-20)
    Abstract: Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2009
    In:  Science Vol. 323, No. 5910 ( 2009-01-02), p. 38-38
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 323, No. 5910 ( 2009-01-02), p. 38-38
    Abstract: Dehaene et al . (Reports, 30 May 2008, p. 1217) argued that native speakers of Mundurucu, a language without a linguistic numerical system, inherently represent numerical values as a logarithmically spaced spatial continuum. However, their data do not rule out the alternative conclusion that Mundurucu speakers encode numbers linearly with scalar variability and psychologically construct space-number mappings by analogy.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 9 ( 2006-02-28), p. 3486-3489
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 9 ( 2006-02-28), p. 3486-3489
    Abstract: Human infants can discriminate visual and auditory stimuli solely on the basis of number, suggesting a developmental foundation for the nonverbal number representations of adult humans. Recent studies suggest that these language-independent number representations are multisensory in both adult humans and nonhuman animals. Surprisingly, however, previous studies have yielded mixed evidence concerning whether nonverbal numerical representations independent of sensory modality are present early in human development. In this article, we use a paradigm that avoids stimulus confounds present in previous studies of cross-modal numerical mapping in infants. We show that 7-month-old infants preferentially attend to visual displays of adult humans that numerically match the number of adult humans they hear speaking. These data provide evidence that by 7 months of age, infants connect numerical representations across different sensory modalities when presented with human faces and voices. Results support the possibility of a shared system between preverbal infants and nonverbal animals for representing number.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 45 ( 2005-11-08), p. 16507-16511
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 45 ( 2005-11-08), p. 16507-16511
    Abstract: Monkeys ( Macaca mulatta ) were trained to order visual arrays based on their number of elements and to conditionally choose the array with the larger or smaller number of elements dependent on a color cue. When the screen background was red, monkeys were reinforced for choosing the smaller numerical value first. When the screen background was blue, monkeys were reinforced for choosing the larger numerical value first. Monkeys showed a semantic congruity effect analogous to that reported for human comparison judgments. Specifically, decision time was systematically influenced by the semantic congruity between the cue (“choose smaller” or “choose larger”) and the magnitude of the choice stimuli (small or large numbers of dots). This finding demonstrates a semantic congruity effect in a nonlinguistic animal and provides strong evidence for an evolutionarily primitive magnitude-comparison algorithm common to humans and monkeys.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 45 ( 2013-11-05), p. 18116-18120
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 45 ( 2013-11-05), p. 18116-18120
    Abstract: Human infants in the first year of life possess an intuitive sense of number. This preverbal number sense may serve as a developmental building block for the uniquely human capacity for mathematics. In support of this idea, several studies have demonstrated that nonverbal number sense is correlated with mathematical abilities in children and adults. However, there has been no direct evidence that infant numerical abilities are related to mathematical abilities later in childhood. Here, we provide evidence that preverbal number sense in infancy predicts mathematical abilities in preschool-aged children. Numerical preference scores at 6 months of age correlated with both standardized math test scores and nonsymbolic number comparison scores at 3.5 years of age, suggesting that preverbal number sense facilitates the acquisition of numerical symbols and mathematical abilities. This relationship held even after controlling for general intelligence, indicating that preverbal number sense imparts a unique contribution to mathematical ability. These results validate the many prior studies purporting to show number sense in infancy and support the hypothesis that mathematics is built upon an intuitive sense of number that predates language.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 9 ( 2005-03), p. 3177-3178
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 9 ( 2005-03), p. 3177-3178
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 1998
    In:  Science Vol. 282, No. 5389 ( 1998-10-23), p. 746-749
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 282, No. 5389 ( 1998-10-23), p. 746-749
    Abstract: A fundamental question in cognitive science is whether animals can represent numerosity (a property of a stimulus that is defined by the number of discriminable elements it contains) and use numerical representations computationally. Here, it was shown that rhesus monkeys represent the numerosity of visual stimuli and detect their ordinal disparity. Two monkeys were first trained to respond to exemplars of the numerosities 1 to 4 in an ascending numerical order (1 → 2 → 3 → 4). As a control for non-numerical cues, exemplars were varied with respect to size, shape, and color. The monkeys were later tested, without reward, on their ability to order stimulus pairs composed of the novel numerosities 5 to 9. Both monkeys responded in an ascending order to the novel numerosities. These results show that rhesus monkeys represent the numerosities 1 to 9 on an ordinal scale.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 1998
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...