GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 600, No. 7889 ( 2021-12-16), p. 472-477
    Abstract: The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19 1,2 , host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases 3–7 . They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 608, No. 7921 ( 2022-08-04), p. E1-E10
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 607, No. 7917 ( 2022-07-07), p. 97-103
    Abstract: Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care 1 or hospitalization 2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling ( IL10RB and PLSCR1 ), leucocyte differentiation ( BCL11A ) and blood-type antigen secretor status ( FUT2 ). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase ( ATP11A ), and increased expression of a mucin ( MUC1 )—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules ( SELE , ICAM5 and CD209 ) and the coagulation factor F8 , all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2009
    In:  Annals of the New York Academy of Sciences Vol. 1173, No. 1 ( 2009-09), p. 47-51
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 1173, No. 1 ( 2009-09), p. 47-51
    Abstract: Anti‐C1q antibodies are found in a variety of diseases, in addition to systemic lupus erythematosus (SLE), and in 3–5% of normal individuals. In particular, anti‐C1q antibodies are detected at a high titer in 100% of patients with hypocomplementemic urticarial vasculitis and in 30–48% of SLE patients. Their titer correlates with active renal disease with a sensitivity of 44–100% and a specificity of 70–92%. An increase in anti‐C1q antibody titer has been suggested to be able to predict renal flares in lupus nephritis so that monitoring anti‐C1q might be valuable for the clinical management of SLE patients as a noninvasive biological marker. Recently our group studied 228 patients affected by lupus nephritis and found that the association of anti‐C1q, C3, and C4, in a multivariate analysis, provided the best prediction of renal flares, particularly in patients with focal and diffuse proliferative lupus nephritis and in the absence of antiphospholipid antibodies.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 45 ( 2019-11-05), p. 22730-22736
    Abstract: The prognosis of advanced/recurrent cervical cancer patients remains poor. We analyzed 54 fresh-frozen and 15 primary cervical cancer cell lines, along with matched-normal DNA, by whole-exome sequencing (WES), most of which harboring Human-Papillomavirus-type-16/18. We found recurrent somatic missense mutations in 22 genes (including PIK3CA, ERBB2, and GNAS) and a widespread APOBEC cytidine deaminase mutagenesis pattern (TCW motif) in both adenocarcinoma (ACC) and squamous cell carcinomas (SCCs). Somatic copy number variants (CNVs) identified 12 copy number gains and 40 losses, occurring more often than expected by chance, with the most frequent events in pathways similar to those found from analysis of single nucleotide variants (SNVs), including the ERBB2/PI3K/AKT/mTOR, apoptosis, chromatin remodeling, and cell cycle. To validate specific SNVs as targets, we took advantage of primary cervical tumor cell lines and xenografts to preclinically evaluate the activity of pan-HER (afatinib and neratinib) and PIK3CA (copanlisib) inhibitors, alone and in combination, against tumors harboring alterations in the ERBB2/PI3K/AKT/mTOR pathway (71%). Tumors harboring ERBB2 (5.8%) domain mutations were significantly more sensitive to single agents afatinib or neratinib when compared to wild-type tumors in preclinical in vitro and in vivo models ( P = 0.001). In contrast, pan-HER and PIK3CA inhibitors demonstrated limited in vitro activity and were only transiently effective in controlling in vivo growth of PIK3CA-mutated cervical cancer xenografts. Importantly, combinations of copanlisib and neratinib were highly synergistic, inducing long-lasting regression of tumors harboring alterations in the ERBB2/PI3K/AKT/mTOR pathway. These findings define the genetic landscape of cervical cancer, suggesting that a large subset of cervical tumors might benefit from existing ERBB2/PIK3CA/AKT/mTOR-targeted drugs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 2 ( 2019-01-08), p. 619-624
    Abstract: Ovarian cancer remains the most lethal gynecologic malignancy. We analyzed the mutational landscape of 64 primary, 41 metastatic, and 17 recurrent fresh-frozen tumors from 77 patients along with matched normal DNA, by whole-exome sequencing (WES). We also sequenced 13 pairs of synchronous bilateral ovarian cancer (SBOC) to evaluate the evolutionary history. Lastly, to search for therapeutic targets, we evaluated the activity of the Bromodomain and Extra-Terminal motif (BET) inhibitor GS-626510 on primary tumors and xenografts harboring c-MYC amplifications. In line with previous studies, the large majority of germline and somatic mutations were found in BRCA1/2 (21%) and TP53 (86%) genes, respectively. Among mutations in known cancer driver genes, 77% were transmitted from primary tumors to metastatic tumors, and 80% from primary to recurrent tumors, indicating that driver mutations are commonly retained during ovarian cancer evolution. Importantly, the number, mutation spectra, and signatures in matched primary–metastatic tumors were extremely similar, suggesting transcoelomic metastases as an early dissemination process using preexisting metastatic ability rather than an evolution model. Similarly, comparison of SBOC showed extensive sharing of somatic mutations, unequivocally indicating a common ancestry in all cases. Among the 17 patients with matched tumors, four patients gained PIK3CA amplifications and two patients gained c-MYC amplifications in the recurrent tumors, with no loss of amplification or gain of deletions. Primary cell lines and xenografts derived from chemotherapy-resistant tumors demonstrated sensitivity to JQ1 and GS-626510 ( P = 0.01), suggesting that oral BET inhibitors represent a class of personalized therapeutics in patients harboring recurrent/chemotherapy-resistant disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...