GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 35 ( 2018-08-28), p. 8787-8792
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 35 ( 2018-08-28), p. 8787-8792
    Abstract: Wnt signaling is initiated by Wnt ligand binding to the extracellular ligand binding domain, called the cysteine-rich domain (CRD), of a Frizzled (Fzd) receptor. Norrin, an atypical Fzd ligand, specifically interacts with Fzd4 to activate β-catenin–dependent canonical Wnt signaling. Much of the molecular basis that confers Norrin selectivity in binding to Fzd4 was revealed through the structural study of the Fzd4 CRD –Norrin complex. However, how the ligand interaction, seemingly localized at the CRD, is transmitted across full-length Fzd4 to the cytoplasm remains largely unknown. Here, we show that a flexible linker domain, which connects the CRD to the transmembrane domain, plays an important role in Norrin signaling. The linker domain directly contributes to the high-affinity interaction between Fzd4 and Norrin as shown by ∼10-fold higher binding affinity of Fzd4 CRD to Norrin in the presence of the linker. Swapping the Fzd4 linker with the Fzd5 linker resulted in the loss of Norrin signaling, suggesting the importance of the linker in ligand-specific cellular response. In addition, structural dynamics of Fzd4 associated with Norrin binding investigated by hydrogen/deuterium exchange MS revealed Norrin-induced conformational changes on the linker domain and the intracellular loop 3 (ICL3) region of Fzd4. Cell-based functional assays showed that linker deletion, L430A and L433A mutations at ICL3, and C-terminal tail truncation displayed reduced β-catenin–dependent signaling activity, indicating the functional significance of these sites. Together, our results provide functional and biochemical dissection of Fzd4 in Norrin signaling.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 15 ( 2002-07-23), p. 9733-9738
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 15 ( 2002-07-23), p. 9733-9738
    Abstract: Protein modification by ubiquitin is a dynamic and reversible process that is involved in the regulation of a variety of cellular processes. Here, we show that myogenic differentiation of embryonic muscle cells is antagonistically regulated by two deubiquitinating enzymes, UBP45 and UBP69, that are generated by alternative splicing. Both enzymes cleaved off ubiquitin from polyubiquitinated protein conjugates in vivo as well as from linear ubiquitin–protein fusions in vitro . In cultured myoblasts, the level of UBP69 mRNA markedly but transiently increased before membrane fusion, whereas that of UBP45 mRNA increased as the cells fused to form myotubes. Both myoblast fusion and accumulation of myosin heavy chain were dramatically stimulated by the stable expression of UBP69 but strongly attenuated by that of the catalytically inactive form of the protease, suggesting that the mutant enzyme acts dominant negatively on the function of the wild-type protease. In contrast, stable expression of UBP45 completely blocked both of the myogenic processes but that of inactive enzyme did not, indicating that the catalytic activity of the enzyme is essential for its inhibitory effects. These results indicate that differential expression of UBP45 and UBP69 is involved in the regulation of muscle cell differentiation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...