GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 137, No. 7 ( 2021-02-18), p. 923-928
    Abstract: In hematopoietic cell transplantation (HCT), permissive HLA-DPB1 mismatches between patients and their unrelated donors are associated with improved outcomes compared with nonpermissive mismatches, but the underlying mechanism is incompletely understood. Here, we used mass spectrometry, T-cell receptor-β (TCRβ) deep sequencing, and cellular in vitro models of alloreactivity to interrogate the HLA-DP immunopeptidome and its role in alloreactive T-cell responses. We find that permissive HLA-DPB1 mismatches display significantly higher peptide repertoire overlaps compared with their nonpermissive counterparts, resulting in lower frequency and diversity of alloreactive TCRβ clonotypes in healthy individuals and transplanted patients. Permissiveness can be reversed by the absence of the peptide editor HLA-DM or the presence of its antagonist, HLA-DO, through significant broadening of the peptide repertoire. Our data establish the degree of immunopeptidome divergence between donor and recipient as the mechanistic basis for the clinically relevant permissive HLA-DPB1 mismatches in HCT and show that permissiveness is dependent on HLA-DM–mediated peptide editing. Its key role for harnessing T-cell alloreactivity to HLA-DP highlights HLA-DM as a potential novel target for cellular and immunotherapy of leukemia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 209, No. 8 ( 2022-10-15), p. 1555-1565
    Abstract: Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2022
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 118, No. 4 ( 2011-07-28), p. 916-925
    Abstract: MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 109, No. 9 ( 2007-05-01), p. 4089-4096
    Abstract: Minor histocompatibility antigens (mHags) play an important role in both graft-versus-tumor effects and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation. We applied biochemical techniques and mass spectrometry to identify the peptide recognized by a dominant tumor-reactive donor T-cell reactivity isolated from a patient with relapsed multiple myeloma who underwent transplantation and entered complete remission after donor lymphocyte infusion. A frequently occurring single nucleotide polymorphism in the human ATP-dependent interferon-responsive (ADIR) gene was found to encode the epitope we designated LB-ADIR-1F. Although gene expression could be found in cells from hematopoietic as well as nonhematopoietic tissues, the patient suffered from only mild acute GVHD despite high percentages of circulating LB-ADIR-1F–specific T cells. Differential recognition of nonhematopoietic cell types and resting hematopoietic cells as compared with activated B cells, T cells, and tumor cells was demonstrated, illustrating variable LB-ADIR-1F expression depending on the cellular activation state. In conclusion, the novel mHag LB-ADIR-1F may be a suitable target for cellular immunotherapy when applied under controlled circumstances.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 549-549
    Abstract: Minor histocompatibility antigens (mHag) play an important role in beneficial graft versus tumor (GVT) reactivities but mHag reactive T cells may also cause graft versus host disease (GVHD). A female patient with relapsed multiple myeloma (MM) after allogeneic HLA identical stem cell transplantation (SCT) responded 7 weeks after donor lymphocyte infusion (DLI) by developing transient acute GVHD grade II and complete clearance of the malignant cells resulting in a long lasting complete remission. From blood and bone marrow samples that were taken at the time of the clinical response, a dominant HLA-A2 restricted CD8+ CTL designated RDR2, was isolated that recognized the patients MM cells, PHA-blasts and EBV-LCL, but not resting T cells. To identify the peptide recognized by CTL RDR2, HLA-A2 was isolated from EBV-LCL that were recognized by CTL RDR2, and peptides were separated and fractionated by HPLC techniques applying several different separation conditions. Various HPLC fractions were analyzed by mass spectrometry (MS) and tested for recognition by CTL RDR2 in 51Chromium release assays. Based on the correlation between the presence of specific masses in the MS analyses and the reactivity of the fractions, candidate masses were selected, sequence analysis was performed, and synthetic peptides were generated. An 11-mer peptide was recognized by CTL RDR2 and was found to be identical to amino acid 13–23 of an alternatively translated protein of the ATP dependent interferon responsive (ADIR) gene. ADIR gene constructs forcing translation into the alternative frame displayed higher recognition as compared to constructs resulting in normal translation. Patient but not donor cells contained a known genomic polymorphism in the ADIR gene resulting in an amino acid change from serine (S) to phenylalanine (F) in the alternative frame. When ADIR gene transcripts from a panel of 76 unrelated HLA-A2 positive individuals were sequenced, a 100% correlation was found between the presence of the ADIR polymorphism and lysis of PHA-blasts by CTL RDR2. The polymorphism was present in 43 out of 76 individuals tested. We designated the mHag LB-ADIR-1F. Tetramer staining of patient samples taken after DLI showed at the peak of the response 2.6% LB-ADIR-1F specific CD8+ T cells. Despite the high number of circulating cytotoxic CTL, GVHD was mild, and rapidly disappeared after treatment. Since ADIR gene expression is not restricted to hematopoiesis, we compared recognition of LB-ADIR-1F expressing hematopoietic cell types with recognition of LB-ADIR-1F expressing mesenchymal stem cells and biliary epithelial cells. In both IFNg production assays and in cytotoxicity assays responses to MM cells, other hematological malignancies and activated T and B cells were strong, whereas resting T cells and non hematopoietic cells displayed only minor stimulatory capacity and were poorly lysed by LB-ADIR-1F specific T cells. In conclusion, the ADIR gene encodes a new frequently occurring mHag, and recognition of the antigen by LB-ADIR-1F reactive cells seems to depend on the activation state of the target cells. We therefore hypothesize that administration of LB-ADIR-1F reactive T cells may result in GVT responses, and that concurrent GVHD development may depend on the activation state of GVHD target tissues.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 914-914
    Abstract: T cells recognizing solid tumors and Hodgkin's lymphoma can be released from anergy by immune checkpoint inhibitors. Its therapeutic success seems to be associated with the abundance of neoepitopes within the tumor mutanome. In neoplastic B cells, VDJ recombination and somatic hypermutation (SHM) generate unique immunoglobulin (Ig) peptide sequences that predictably contribute to the lymphoma mutanome. Efficient presentation of a neoepitope by an individual's HLA complex is an essential requirement for neoepitope-directed T-cell immunity. Presentation of Ig-derived peptides in HLA class I has hitherto been demonstrated only indirectly, and there is as yet no direct evidence for presentation of Ig-derived neoepitopes of primary human lymphoma cells. We analyzed HLA-presented Ig-derived peptides in 9 clonal B-cell populations: 3 chronic lymphocytic leukemias (CLL), 1 hairy cell leukemia, 1 follicular lymphoma (FL), 3 EBV-transformed lymphoblastoid cell lines, and the U299 myeloma cell line. Full-length B-cell receptor (BCR) VDJ and VJ sequences were obtained by unbiased ARTISAN PCR and Pacific Biosciences next generation sequencing. 1067 unique Ig-derived nonamers were predicted to bind the HLA class I alleles expressed by the respective B-cell clone by the NetCTLpan bioinformatics tool. 650 candidate epitopes (60.9%) were derived from constant (C) regions; 417 (39.1%) from variable (V) regions. 146 predicted peptides from V regions (35.0%) contained at least one amino acid change due to SHM or at least one amino acid from CDR3 and were therefore considered potential neoepitopes. To investigate experimentally which epitopes are processed intracellularly and presented by HLA class I, HLA class I-peptide complexes were immunoaffinity purified by the monoclonal antibody W6.23 and analyzed by liquid chromatography and tandem mass spectrometry. In total, 53,663 unique peptides (8-15mers) were identified by Uniprot matching with a Mascot Ion Score of 〉 20. HLA ligandome sizes of individual B-cell populations ranged from 600 to 14,091 unique peptides per case. Within any HLA ligandome, 6 to 81 peptides were annotated as BCR-derived epitopes if they matched the individual BCR sequences. Of the total of 276 eluted BCR peptides, 203 (73.5%) where derived from C regions and 73 (26.5%) from V regions. 25 eluted peptides (range 0-10 per case) were derived from CDR3 regions or contained SHM-induced amino acid changes, thus fulfilling the definition of neoepitopes. Neoepitopes were detected in all cases with more than 109 cells as input material. Up to date, 4 neoepitopes have been synthesized and their mass spectra confirmed. Confirmation of all remaining neoepitopes is ongoing. No BCR-derived neoepitopes could be detected in an IGHV-unmutated CLL and the FL. These two cases had the lowest number of input cells and small overall ligandome sizes of only 600 and 1015 unique UniProt-matched peptides, respectively. We demonstrate for the first time that primary neoplastic B cells process and present BCR-derived neoepitopes in the context of HLA class I. Despite their origin from only two polypeptides, BCR epitopes and neoepitopes represent app. 0.5% and 0.05% of the total HLA class I ligandome, respectively. The challenging identification of BCR neoepitopes was possible by unbiased identification of BCR transcripts combined with next generation sequencing and targeted search for HLA class I-bound peptides. Matching fragmentation patterns of native and synthetic peptides suggest high specificity of this strategy. With respect to sensitivity, the ability to identify low frequency peptides appears to be strongly dependent on the amount of input cells. Our data close a gap in the mechanism underlying the evidence that highly immunogenic formulations of an idiotype vaccine are able to induce MHC class I-restricted cytotoxic T-cell responses. While phase III trials of idiotype vaccination aiming to induce anti-Ig antibodies failed to demonstrate convincing prolongation of clinical remissions achieved by chemotherapy, our data lend support for exploring idiotype-specific T-cell immunity against B-cell lymphomas. With recent advances in peptide synthesis, adjuvant formulations, and the availability of check point inhibitors to surpass regulatory activity, active immunotherapy targeting the lymphoma idiotype may regain appeal as truly personalized immune therapy. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 118, No. 26 ( 2011-12-22), p. 6733-6742
    Abstract: T-cell alloreactivity directed against non–self-HLA molecules has been assumed to be less peptide specific than conventional T-cell reactivity. A large variation in degree of peptide specificity has previously been reported, including single peptide specificity, polyspecificity, and peptide degeneracy. Peptide polyspecificity was illustrated using synthetic peptide-loaded target cells, but in the absence of confirmation against endogenously processed peptides this may represent low-avidity T-cell reactivity. Peptide degeneracy was concluded based on recognition of Ag-processing defective cells. In addition, because most investigated alloreactive T cells were in vitro activated and expanded, the previously determined specificities may have not been representative for alloreactivity in vivo. To study the biologically relevant peptide specificity and avidity of alloreactivity, we investigated the degree of peptide specificity of 50 different allo-HLA–reactive T-cell clones which were activated and expanded in vivo during GVHD. All but one of the alloreactive T-cell clones, including those reactive against Ag-processing defective T2 cells, recognized a single peptide allo-HLA complex, unique for each clone. Down-regulation of the expression of the recognized Ags using silencing shRNAs confirmed single peptide specificity. Based on these results, we conclude that biologically relevant alloreactivity selected during in vivo immune response is peptide specific.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 204, No. 12 ( 2020-06-15), p. 3273-3282
    Abstract: HLA-DP alleles can be classified into functional T cell epitope (TCE) groups. TCE-1 and TCE-2 are clearly defined, but TCE-3 still represents an heterogeneous group. Because polymorphisms in HLA-DP influence the presented peptidome, we investigated whether the composition of peptides binding in HLA-DP may be used to refine the HLA-DP group classification. Peptidomes of human HLA-DP–typed B cell lines were analyzed with mass spectrometry after immunoaffinity chromatography and peptide elution. Gibbs clustering was performed to identify motifs of binding peptides. HLA-DP peptide-binding motifs showed a clear association with the HLA-DP allele-specific sequences of the binding groove. Hierarchical clustering of HLA-DP immunopeptidomes was performed to investigate the similarities and differences in peptidomes of different HLA-DP molecules, and this clustering resulted in the categorization of HLA-DP alleles into 3-DP peptidome clusters (DPC). The peptidomes of HLA-DPB1*09:01, -10:01, and -17:01 (TCE-1 alleles) and HLA-DPB1*04:01, -04:02, and -02:01 (TCE-3 alleles) were separated in two maximal distinct clusters, DPC-1 and DPC-3, respectively, reflecting their previous TCE classification. HLA-DP alleles categorized in DPC-2 shared certain similar peptide-binding motifs with DPC-1 or DPC-3 alleles, but significant differences were observed for other positions. Within DPC-2, divergence between the alleles was observed based on the preference for different peptide residues at position 9. In summary, immunopeptidome analysis was used to unravel functional hierarchies among HLA-DP alleles, providing new molecular insights into HLA-DP classification.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2020
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: European Journal of Immunology, Wiley, Vol. 43, No. 10 ( 2013-10), p. 2554-2565
    Abstract: The efficiency of antigen ( A g) processing by dendritic cells ( DC s) is vital for the strength of the ensuing T ‐cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides ( SLP s) has shown more promising (pre‐)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLP s. We report an in vitro processing analysis of SLP s for MHC class I and class II presentation by murine DC s and human monocyte‐derived DC s. Compared to protein, SLP s were rapidly and much more efficiently processed by DC s, resulting in an increased presentation to CD 4 + and CD 8 + T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of A g. Whereas whole soluble protein A g ended up largely in endolysosomes, SLP s were detected very rapidly outside the endolysosomes after internalization by DC s, followed by proteasome‐ and transporter associated with Ag processing‐dependent MHC class I presentation. Compared to the slower processing route taken by whole protein A gs, our results indicate that the efficient internalization of SLP s, accomplished by DC s but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD 8 + T ‐cell activation.
    Type of Medium: Online Resource
    ISSN: 0014-2980 , 1521-4141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 1491907-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 4545-4546
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...