GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 45, No. 8 ( 2013-8), p. 918-922
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3333-3333
    Abstract: Frequently mutated in Acute myeloid leukemia (AML), FLT3 is considered as one of the favorable targets for treatment. The FLT3 internal tandem duplication (ITD) mutation enhances kinase activity and causes hyperactivation of downstream signal transduction. Several small molecule FLT3 inhibitors have developed, but their clinical efficacy is limited due to generation of drug resistance. In this study, we define a new mechanism of drug resistance toward tyrosine kinase inhibitors (TKIs). Initially, we found a rapid decrease in the protein level of tumor suppressor p53 in FLT3-ITD-positive MV4-11 and MOLM13 cells and peripheral blood mononuclear cells (PBMCs) from FLT3-ITD AML patients upon treatment with TKIs including sorafenib, sunitinib and quizartinib. The decrease is not caused by changes in mRNA expression as revealed by qPCR analyses but rather by accelerated protease degradation because the p53 protein was stabilized by proteasome inhibitor MG132. Furthermore, treatment of cells with RG7388, a potent disruptor of p53 and MDM2 interaction, prevented the TKI-induced p53 loss. Since MDM2 is the most important E3 ligase responsible for ubiquitination of p53, the data suggest that TKIs may lead to the degradation of p53 by promoting ubiquitination. Indeed, ubiquitination assays verified that TKIs promoted K48 poly-ubiquitination of p53. Previous studies have demonstrated that activations of FLT3 downstream signaling components such as ERKs and Akt reduce p53 protein stability through ubiquitination by activating MDM2. It is somewhat unexpected that inhibition of FLT3-ITD and its downstream signaling pathways also resulted in decreased p53 stability due to increased ubiquitination. We treated FLT3-ITD-containing cells with specific ERK, AKT and STAT5 inhibitors. Interestingly, while inhibition of ERKs and AKT had no significant effect on the stability of p53, STAT5 inhibition resulted in a reduced level of p53 accompanied by increased K48 poly-ubiquitination. We further analyzed the interaction of p53 with MDM2 in AML cells by using immunoprecipitation. The results showed that the p53-MDM2 interaction was significantly enhanced after treatment with TKIs and STAT5 inhibitors, which was diminished in the presence of RG7388. Subcellular fractionation revealed the presence of p53 and STAT5 in both nucleus and cytoplasm. Treatment of cells with TKIs resulted in a decreased level of p53 and STAT5 in the nucleus, and immunoprecipitation of nuclear proteins with a p53 antibody revealed a reduced association of p53 with STAT5. Taken together, the data suggest that FLT3 inhibitors inhibited nuclear translocation of STAT5 and reduced its interaction of p53 thereby facilitating p53/MDM2 interaction and subsequent ubiquitination and degradation of p53. This study reveals a novel mechanism by which drug resistance to TKIs may occur and further support the use of MDM2/p53 interaction inhibitors in combination with TKIs for treatment of AML. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biomedicine & Pharmacotherapy, Elsevier BV, Vol. 155 ( 2022-11), p. 113779-
    Type of Medium: Online Resource
    ISSN: 0753-3322
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1501510-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 187, No. 10 ( 1998-05-18), p. 1565-1573
    Abstract: The growth and differentiation of mast cells and melanocytes require stem cell factor (SCF), the ligand for the kit receptor tyrosine kinase. SCF may exist as a membrane-bound or soluble molecule. Abnormalities of the SCF-kit signaling pathway, with increased local concentrations of soluble SCF, have been implicated in the pathogenesis of the human disease cutaneous mastocytosis, but have not yet been shown to play a causal role. To investigate both the potential of SCF to cause mastocytosis and its role in epidermal melanocyte homeostasis, we targeted the expression of SCF to epidermal keratinocytes in mice with two different transgenes controlled by the human keratin 14 promoter. The transgenes contained cDNAs that either produced SCF, which can exist in both membrane-bound and soluble forms, or SCF, which remains essentially membrane bound. Murine epidermal keratinocyte expression of membrane-bound/ soluble SCF reproduced the phenotype of human cutaneous mastocytosis, with dermal mast cell infiltrates and epidermal hyperpigmentation, and caused the maintenance of a population of melanocytes in the interadnexal epidermis, an area where melanocytes and melanin are found in human skin but where they are not typically found in murine skin. Expression of membrane-bound SCF alone resulted in epidermal melanocytosis and melanin production, but did not by itself cause mastocytosis. We conclude, first, that a phenotype matching that of human mastocytosis can be produced in mice by keratinocyte overproduction of soluble SCF, suggesting a potential cause of this disease. Second, we conclude that keratinocyte expression of membrane-bound SCF results in the postnatal maintenance of epidermal melanocytes in mice. Since the resulting animals have skin that more closely approximates human skin than do normal mice, their study may be more relevant to human melanocyte biology than the study of skin of normal mice.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1998
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...