GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Medicine  (286)
Material
Language
Subjects(RVK)
  • 1
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 119, No. 2 ( 2016-07-08), p. 222-236
    Abstract: Systemic inflammation has emerged as a key pathophysiological process that induces multiorgan injury and causes serious human diseases. Endothelium is critical in maintaining cellular and inflammatory homeostasis, controlling systemic inflammation, and progression of inflammatory diseases. We postulated that endothelium produces and releases endogenous soluble factors to modulate inflammatory responses and protect against systemic inflammation. Objective: To identify endothelial cell–released soluble factors that protect against endothelial barrier dysfunction and systemic inflammation. Methods and Results: We found that conditioned medium of endothelial cells inhibited cyclooxgenase-2 and interleukin-6 expression in macrophages stimulated with lipopolysaccharide. Analysis of conditioned medium extracts by liquid chromatography–mass spectrometry showed the presence of 5-methoxytryptophan (5-MTP), but not other related tryptophan metabolites. Furthermore, endothelial cell–derived 5-MTP suppressed lipopolysaccharide-induced inflammatory responses and signaling in macrophages and endotoxemic lung tissues. Lipopolysaccharide suppressed 5-MTP level in endothelial cell-conditioned medium and reduced serum 5-MTP level in the murine sepsis model. Intraperitoneal injection of 5-MTP restored serum 5-MTP accompanied by the inhibition of lipopolysaccharide-induced endothelial leakage and suppression of lipopolysaccharide- or cecal ligation and puncture–mediated proinflammatory mediators overexpression. 5-MTP administration rescued lungs from lipopolysaccharide-induced damages and prevented sepsis-related mortality. Importantly, compared with healthy subjects, serum 5-MTP level in septic patients was decreased by 65%, indicating an important clinical relevance. Conclusions: We conclude that 5-MTP belongs to a novel class of endothelium-derived protective molecules that defend against endothelial barrier dysfunction and excessive systemic inflammatory responses.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 938-938
    Abstract: Abstract 938 KIT is a receptor tyrosine kinase (RTK) and its aberrant activities resulting from protein overexpression and/or activating mutations are associated with a number of malignancies including core binding factor (CBF) AML [e.g., patients with t(8;21) or inv(16) or molecular equivalent RUNX1/RUNX1T1 or CBFB/MYH11, respectively]. RTK inhibitors (e.g. PKC412) have been shown to suppress aberrant KIT activity and delay tumor growth, but they are active only on distinct types of KIT mutations (KITmut). Furthermore, resistance to these inhibitors, as a result of secondary mutations or KIT overexpression, is emerging. Thus, we hypothesize that direct inhibition of KIT gene transcription may be a valuable therapeutic approach to override aberrant KIT expression and activity. Here, we described the regulatory and functional role of Sp1/NFkB-miR29b feedback loop in KIT-driven leukemia that can be targeted pharmacologically. Applying chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) to RUNX1/RUNX1T1-positive Kasumi-1 cells, we demonstrated that while, the Sp1/NFkB complex was enriched on KIT promoter and acted as gene transactivator thereby leading to KIT overexpression, Sp1/NFkB recruited HDAC1 and HDAC3 to miR29b regulatory region thereby epigenetically repressing miR29b. This microRNA, when expressed, targeted Sp1 and eventually decreased Sp1/NFkB-mediated gene transactivation, including that of KIT. In agreement with these, we showed that when Sp1, NFkB and HDAC1 were transiently overexpressed in Kasumi-1 cells, increased KIT expression and decreased miR29b transcription occurred. In contrast, siRNA knockdown of Sp1, NFkB and HDAC1 augmented miR29b level and decreased KIT transcription. Moreover, ectopic miR29b expression impaired Sp1/NFkB repressor complex on the promoter of endogenous miR29b, thereby resulting in re-expression of the endogenous microRNA and further inhibition of Sp1/NFkB-dependent KIT transcription. Importantly, the activity of Sp1/NFkB/HDACs complex can also be pharmacologically modulated leading to restored miR29b transcription and abrogated KIT expression. We showed that pharmacologic interference with Sp1/NFkB/HDACs using their respective inhibitors, such as bortezomib (0, 6, 20, 60 and 100nM for Sp1 and NFkB), mithramycin A (150 and 300ng/ml for Sp1), bay 11-7082 (3μM for NFkB) and O SU-HDAC42 (1μM for HDAC), upregulated miR29b at early time point (6 hours) and decreased Sp1 and in turn KIT expression in KIT overexpression cell lines (e.g., Kasumi-1) and AML patient blasts. EMSA and ChIP assay demonstrated that bortezomib or HDAC42-mediated KIT repression and miR29b upregulation occurred through the dissociation of Sp1/NFkB complex from the corresponding promoter. To further investigate the therapeutic potential of targeting KIT over-expression in leukemia, we stably expressed KIT wild type (KITwt) or KITmut (D816V) in FDC-P1 cell line (murine non-tumorigenic cells derived from myeloid precursors), and we evidenced that both KITwt and KITmut promoted cell proliferation that was overcome by bortezomib in clonogenic assay. In in vivo study, when NOD/SCID mice were engrafted with FDC-P1/KITmut cells (5×106/mouse), they developed significant splenomegaly and marrow blast infiltration through KIT overexpression. When leukemia-carrying mice were treated with bortezomib (1mg/kg) for 48 hours, we observed an obvious increase of endogenous miR29b expression and a significant reduction of KIT expression. Leukemic mice that received 1mg/kg of bortezomib twice/week for 3 weeks starting on day 21 after engraftment (n=5 mice/group) showed no evidence of splenomegaly and had a significantly longer median survival [59 days (twice/week) vs 28 days (vehicle-treated), p=0.0036], compared to vehicle-treated mice that instead showed massive splenomegaly. Cytospin of marrow and histopathology of spleen and liver showed that vehicle-treated mice displayed extensive blast infiltration that was instead absent in bortezomib-treated mice. Altogether, our study revealed a previously unrecognized protein-microRNA regulatory network whose imbalance contributes to KIT-driven leukemia. As the aberrant activity of this network is pharmacologically targetable, this discovery may be quickly translated into the clinic as a novel therapeutic approach for KIT-driven AML and other malignancies. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2006
    In:  Blood Vol. 108, No. 2 ( 2006-07-15), p. 518-524
    In: Blood, American Society of Hematology, Vol. 108, No. 2 ( 2006-07-15), p. 518-524
    Abstract: Melatonin has been shown to be produced by nonpineal cells and possess anti-inflammatory actions in animal models. In the present study, we tested the hypothesis that melatonin suppresses the expression of proinflammatory genes such as cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (INOS) by a common transcriptional mechanism. Melatonin but not tryptophan or serotonin inhibited lipopolysaccharide (LPS)–induced COX-2 and iNOS protein levels and promoter activities in RAW 264.7 cells in a time- and concentration-dependent manner. LPS or LPS plus interferon-γ (IFNγ) increased binding of all 5 isoforms of NF-κB to COX-2 and iNOS promoters. Melatonin selectively inhibited p52 binding without affecting p100 expression, p52 generation from p100, or p52 nuclear translocation. p52 acetylation was enhanced by LPS, which was abrogated by melatonin. Melatonin inhibited p300 histone acetyltransferase (HAT) activity and abrogated p300-augmented COX-2 and iNOS expression. HAT inhibitors suppressed LPS-induced p52 binding and acetylation to an extent similar to melatonin, and melatonin did not potentiate the effect of HAT inhibitors. These results suggest that melatonin inhibits COX-2 and iNOS transcriptional activation by inhibiting p300 HAT activity, thereby suppressing p52 acetylation, binding, and transactivation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2021
    In:  Cancer Research Vol. 81, No. 13_Supplement ( 2021-07-01), p. 1101-1101
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 1101-1101
    Abstract: Epidermal growth factor receptor (EGFR)-mutated lung cancer constitutes a major subgroup of non-small cell lung cancer (NSCLC) and osimertinib is administrated as first-line treatment. However, most patients with osimertinib treatment eventually relapse within one year. The underlying mechanisms of osimertinib resistance remain largely unexplored. In this study, we found that osimertinib resistance could be triggered by the intercellular transfer of wild type EGFR protein encapsulated in exosomes from osimertinib-insensitive NSCLC cells to EGFR-mutated osimertinib-sensitive cells and then the activation of PI3K/AKT and MAPK signaling pathways both in vitro and in vivo. Importantly, osimertinib significantly increased the formation and secretion of exosomes linked to the upregulation of a Rab GTPase (RAB17). These results demonstrate the intercellular transfer of exosomal wild type EGFR maybe a novel resistant mechanism of osimertinib. These findings provide a proof of concept for targeting exosomes to prevent and reverse the osimertinib resistance. Citation Format: Shaocong Wu, Min Luo, Kenneth K. To, Jianye Zhang, Chaoyue Su, Hong Zhang, Sainan An, Fang Wang, Da Chen, Li-Wu Fu. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1101.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2003
    In:  The Journal of Immunology Vol. 171, No. 12 ( 2003-12-15), p. 6581-6588
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 171, No. 12 ( 2003-12-15), p. 6581-6588
    Abstract: To determine whether p300 is involved in inducible NO synthase (iNOS) transcriptional regulation, we evaluated the effect of p300 overexpression on iNOS expression and characterized p300 binding to iNOS promoter in RAW 264.7 cells. p300 overexpression increased iNOS expression which was abrogated by deletion of the histone acetyltransferase (HAT) domain (Δ1472–1522). DNA-binding and chromatin immunoprecipitation assays revealed binding of p300 to several DNA-bound transactivators at basal state. Following stimulation with LPS plus IFN-γ, binding of p300, p50/p65 NF-κB, and IFN-regulatory factor-1 was increased by ∼2-fold. Nuclear p50 was complexed with and acetylated by p300 at the basal binding state which was increased by LPS and IFN-γ stimulation. p300 overexpression resulted in increased p50 acetylation which was reduced by HAT mutation. p50 acetylation correlated with increased NF-κB binding and enhanced p300 recruitment. Co-overexpression of E1A abolished the augmentation of p50 acetylation and p50 binding induced by p300 overexpression, and a correlative suppression of p300 recruitment to the complex. We conclude that p300 is essential for iNOS transcription. Our results suggest that p300 HAT acetylates the p50 subunit of NF-κB, thereby increasing NF-κB binding and NF-κB mediated transactivation.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2003
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2004
    In:  Blood Vol. 103, No. 6 ( 2004-03-15), p. 2135-2142
    In: Blood, American Society of Hematology, Vol. 103, No. 6 ( 2004-03-15), p. 2135-2142
    Abstract: Coactivators p300 and CREB (cyclic adenosine monophosphate [cAMP]–response element binding protein)–binding protein (CBP) serve as an integrator for gene transcription. Their relative involvement in regulating cyclooxygenase-2 (COX-2) promoter activity had not been characterized. Using fibroblast and macrophage COX-2 transcription as a model, we determined p300 and CBP levels in nuclear extracts and their binding to a COX-2 promoter probe. CBP level was barely detectable and there was little CBP binding. In contrast, p300 was detectable in nucleus and its binding to a COX-2 promoter probe was enhanced by phorbol 12-myristate 13-acetate (PMA), interleukin-1β (IL-1β), or lipopolysaccharide (LPS). Binding of p300/CBP-associated factor (PCAF) was also up-regulated. COX-2 proteins and promoter activities induced by these agonists were augmented by p300 overexpression. Early region 1A (E1A), but not its deletion mutant, abrogated COX-2 expression induced by inflammatory mediators and with or without p300 overexpression. Molecular analysis of p300 revealed the requirement of multiple domains, including histone acetyltransferase (HAT) for COX-2 transactivation. Furthermore, roscovitine, an indirect inhibitor of p300 HAT, and histone deacetylase-1 transfection completely abolished COX-2 promoter activity. We conclude that p300 is the predominant coactivator that is essential for COX-2 transcriptional activation by proinflammatory mediators.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Gastrointestinal Endoscopy, Elsevier BV, Vol. 94, No. 3 ( 2021-09), p. 498-505
    Type of Medium: Online Resource
    ISSN: 0016-5107
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2006253-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Gastrointestinal Endoscopy, Elsevier BV, Vol. 87, No. 6 ( 2018-06), p. AB294-
    Type of Medium: Online Resource
    ISSN: 0016-5107
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2006253-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Diabetologia Vol. 60, No. 3 ( 2017-3), p. 464-474
    In: Diabetologia, Springer Science and Business Media LLC, Vol. 60, No. 3 ( 2017-3), p. 464-474
    Type of Medium: Online Resource
    ISSN: 0012-186X , 1432-0428
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1458993-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 71, No. 14 ( 2011-07-15), p. 4866-4876
    Abstract: The cell-cycle G2–M phase gene UBE2C is overexpressed in various solid tumors including castration-resistant prostate cancer (CRPC). Our recent studies found UBE2C to be a CRPC-specific androgen receptor (AR) target gene that is necessary for CRPC growth, providing a potential novel target for therapeutic intervention. In this study, we showed that the G1–S cell-cycle inhibitor-779 (CCI-779), an mTOR inhibitor, inhibited UBE2C mRNA and protein expression in AR-positive CRPC cell models abl and C4-2B. Treatment with CCI-779 significantly decreased abl cell proliferation in vitro and in vivo through inhibition of cell-cycle progression of both G2–M and G1–S phases. In addition, exposure of abl and C4-2B cells to CCI-779 also decreased UBE2C-dependent cell invasion. The molecular mechanisms for CCI-779 inhibition of UBE2C gene expression involved a decreased binding of AR coactivators SRC1, SRC3, p300, and MED1 to the UBE2C enhancers, leading to a reduction in RNA polymerase II loading to the UBE2C promoter, and attenuation of UBE2C mRNA stability. Our data suggest that, in addition to its ability to block cell-cycle G1 to S-phase transition, CCI-779 causes a cell-cycle G2–M accumulation and an inhibition of cell invasion through a novel UBE2C-dependent mechanism, which contributes to antitumor activities of CCI-779 in UBE2C overexpressed AR-positive CRPC. Cancer Res; 71(14); 4866–76. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...