GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Pathology, Wiley, Vol. 248, No. 1 ( 2019-05), p. 116-122
    Abstract: Non‐ossifying fibroma (NOF), which occasionally results in pathologic fracture, is considered the most common benign and self‐limiting lesion of the growing skeleton. By DNA sequencing we have identified hotspot KRAS , FGFR1 and NF1 mutations in 48 of 59 patients (81.4%) with NOF, at allele frequencies ranging from 0.04 to 0.61. Our findings define NOF as a genetically driven neoplasm caused in most cases by activated MAP‐kinase signalling. Interestingly, this driving force either diminishes over time or at least is not sufficient to prevent autonomous regression and resolution. Beyond its contribution to a better understanding of the molecular pathogenesis of NOF, this study adds another benign lesion to the spectrum of KRAS ‐ and MAP‐kinase signalling‐driven tumours. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0022-3417 , 1096-9896
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1475280-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Cancer, Wiley, Vol. 137, No. 11 ( 2015-12), p. 2578-2588
    Abstract: What's new? The proto‐oncogene SRC plays a critical role in several cancers, with its activation influencing cellular proliferation, invasiveness, and metastasis. Little is known, about SRC involvement in liposarcoma (LS), the most common soft tissue sarcoma. The present study provides evidence for a functional role for SRC activation in two LS subtypes: myxoid/round cell LS and pleomorphic LS. In primary human LS and LS‐derived cell lines, relevant activated SRC levels were detected, and cell proliferation decreased in response to SRC knockdown and Dasatinib inhibition, which further curbed cell motility. The data reveal therapeutic promise for SRC inhibition in LS.
    Type of Medium: Online Resource
    ISSN: 0020-7136 , 1097-0215
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 218257-9
    detail.hit.zdb_id: 1474822-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JAMA, American Medical Association (AMA), Vol. 327, No. 2 ( 2022-01-11), p. 179-
    Type of Medium: Online Resource
    ISSN: 0098-7484
    RVK:
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2022
    detail.hit.zdb_id: 2958-0
    detail.hit.zdb_id: 2018410-4
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: British Journal of Haematology, Wiley, Vol. 198, No. 3 ( 2022-08), p. 482-491
    Abstract: The prognosis of patients with relapsed diffuse large B‐cell lymphoma (DLBCL) remains poor with current options. Here we prospectively evaluated the combination of pixantrone with obinutuzumab for up to six cycles for patients with relapsed or refractory DLBCL. Overall response rate (ORR) was the primary end‐point. Sixty‐eight patients were evaluated, median age was 75 years, median number of prior lines was three (range 1–10), 52 patients (76.5%) were diagnosed with DLBCL and 16 (23.5%) patients had transformed indolent lymphoma or follicular lymphoma (FL) IIIB. ORR was 35.3% for all and 40% for evaluable patients (16.6% complete response), median progression‐free survival (PFS) and overall survival (OS) were 2.8 months and 8 months, respectively. Analysis of the cell of origin revealed a superior course for patients with non‐GCB (germinal centre B‐cell‐like) phenotype [median OS not reached (n.r.) vs 5.2 months] . Patients with one prior line had an improved outcome over patients treated in later lines (PFS n.r. vs 2.5 months). Disease progression was the main reason for premature termination. Adverse events were mainly haematologic. The combination treatment revealed no unexpected adverse events. Most relevant non‐haematologic toxicity was infection in 28% of patients. In summary, pixantrone–obinutuzumab showed clinical activity with sometimes long‐term remission; however, the trial failed to meet its primary end‐point.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 4 ( 2021-05-07), p. 1152-1166
    Abstract: A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3437-3437
    Abstract: Myxoid liposarcomas (MLS) account for 20% of malignant adipocytic tumors and are characterized by a high rate of local recurrence and development of distant metastases in approximately 40% of patients. Most MLS are driven by the FUS-DDIT3 fusion gene encoding an aberrant transcription factor. The mechanisms whereby FUS-DDIT3 mediates sarcomagenesis are incompletely understood, and strategies to selectively target MLS cells remain elusive. In this study, we employed genome-scale RNA interference (RNAi) screening to uncover that human mesenchymal stem cells engineered to express FUS-DDIT3 and MLS cell lines are dependent on YAP1, a transcriptional co-activator and central effector of the Hippo pathway involved in tissue growth and tumorigenesis. Analysis of a large cohort of primary MLS specimens (n=223) revealed that nuclear YAP1 expression was significantly more prevalent in MLS compared to other liposarcoma subtypes. In support of the concept that increased YAP1-mediated transcriptional activity represents an essential feature of MLS development, RNAi-based YAP1 depletion in cultured MLS cells resulted in suppression of cell viability, cell cycle arrest, cellular senescence, and induction of apoptosis accompanied by decreased YAP1 target gene expression, and YAP1-positive primary MLS tumors showed strong expression of YAP1 downstream effectors such as FOXM1 and PLK1. Mechanistically, FUS-DDIT3 promotes YAP1 transcription, nuclear localization, and transcriptional activity and physically associates with YAP1 in the nucleus of MLS cells, pointing to the coordinate establishment of gene expression programs that promote MLS tumorigenesis. Consistent with the hypothesis that a YAP1-directed therapeutic approach could represent a rational strategy to selectively target FUS-DDIT3-expressing MLS cells, pharmacologic inhibition of YAP1 activity with verteporfin suppressed cell viability and YAP1 target gene expression in MLS cell lines, and the growth-inhibitory effects of YAP1 knockdown or verteporfin treatment could be recapitulated in MLS cell line-based xenograft models. Collectively, our data identify dependence on aberrant YAP1 activity as specific liability of FUS-DDIT3-expressing MLS cells, and provide preclinical evidence that YAP1-mediated signal transduction represents a candidate target for therapeutic intervention that warrants further investigation. Citation Format: Marcel Trautmann, Ya-Yun Cheng, Patrizia Jensen, Ninel Azoitei, Ines Brunner, Jennifer Hüllein, Mikolaj Slabicki, Ilka Isfort, Magdalene Cyra, Eva Wardelmann, Sebastian Huss, Bianca Altvater, Claudia Rossig, Susanne Hafner, Thomas Simmet, Anders Ståhlberg, Pierre Åman, Thorsten Zenz, Undine Lange, Thomas Kindler, Claudia Scholl, Wolfgang Hartmann, Stefan Fröhling. Requirement for YAP1 signaling in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3437.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3939-3939
    Abstract: Introduction: Myxoid liposarcoma (MLS) is the second most common type of liposarcoma and characterized by a high tendency to develop metastases. The molecular hallmark of MLS (≈90%) is a pathognomonic reciprocal t(12;16) (q13;p11) translocation, leading to the specific gene fusion of FUS and DDIT3. The resulting chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS tumorigenesis, although its specific biological function and mechanism of action remain to be substantiated. While radiotherapy and chemotherapy with high-dose ifosfamide and doxorubicin represent established therapeutic options, prognosis in the metastasized situation is poor. Molecularly targeted therapeutic approaches are currently not available. Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional relevance of phosphatidylinositol-3'-kinase (PI3-kinase)/Akt signaling in MLS. Experimental procedures: Immunohistochemical and FISH analyses of PI3-kinase/Akt signaling effectors were performed in a large cohort of clinical MLS tumor specimens. Mutational burden was studied by targeted next-generation sequencing (NGS; Illumina MiSeq). PI3-kinase/Akt-mediated signaling transduction was modulated by specific RNAi knockdown and a pharmacological approach applying the small molecule inhibitor BKM120 (Buparlisib; NVP-BKM120). Cell proliferation and FACS assays were performed in different MLS cell lines. An established MLS chorioallantoic membrane model (CAM) was employed for in vivo confirmation of the preclinical in vitro data. Results: In a significant subset of MLS tumor specimens, immunohistochemical staining revealed elevated phosphorylation levels of various signaling components, indicating that activation of PI3-kinase/Akt signaling is a frequent feature in MLS. Activating PIK3CA mutations and loss of PTEN as mechanism for PI3-kinase/Akt activation were detected in ≈15%. PI3-kinase inhibition significantly suppressed the signaling cascade, associated with reduction of MLS cell viability and induction of apoptosis in vitro and in vivo. Conclusions: Our preclinical study emphasizes the pivotal role of the PI3-kinase/Akt signaling cascade in MLS pathogenesis and indicates the occurrence of specific mutational aberrations apart from the pathognomonic FUS-DDIT3 gene fusion. Our in vitro and in vivo results suggest that targeting the PI3-kinase/Akt signaling pathway provides a rational, molecularly founded therapeutic strategy in the treatment of MLS. Citation Format: Marcel Trautmann, Magdalene Cyra, Christian Bertling, Ilka Isfort, Bianca Altvater, Claudia Rossig, Susanne Hafner, Thomas Simmet, Jessica Becker, Inga Grünewald, Pierre Åman, Reinhard Büttner, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Activation of phosphatidylinositol-3′-kinase/Akt signaling in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3939.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3016-3016
    Abstract: Synovial sarcoma is a rare malignant soft tissue tumor affecting mainly adolescents and young adults. The hallmark of synovial sarcoma is the presence of a reciprocal balanced t(X;18) translocation, leading to the fusion of the SS18 gene to either the SSX1, SSX2 or rarely the SSX4 gene, resulting in a chimeric transcriptional modifier. Therapeutic outcome of synovial sarcomas is primarily determined by the efficiency of surgery as a high tendency for local relapse is documented. Standardized chemo- and radiotherapy are further therapeutic options, however, specific targeted therapies are currently not available. Recently, several expression profiling studies in mesenchymal malignancies revealed gene expression signatures indicating WNT signaling activation in synovial sarcomas. This study was performed to examine the functional relevance of WNT signaling in synovial sarcomas and to evaluate if interference with the WNT signaling pathway might represent an option in the development of novel and highly selective drugs in the treatment of synovial sarcoma. To assess the prevalence of WNT signaling activation in a set of 30 synovial sarcoma tumor samples, nuclear staining of beta-catenin was analyzed immunohistochemically. Nuclear beta-catenin signals were observed in a significant subset of these tumors, indicating activation of the WNT signaling pathway. In order to evaluate whether WNT activation is molecularly dependent on the SS18/SSX fusion proteins, tetracycline-inducible systems overexpressing the SS18/SSX fusion proteins were established in T-Rex293 cells. In luciferase reporter assays employing the TOP-/FOPflash system, expression of SS18/SSX proteins effectively activated TCF/beta-catenin mediated transcriptional activity, which was associated with nuclear recruitment of beta-catenin. Five human synovial sarcoma cell lines were subsequently treated with small molecular inhibitors of WNT signalling. In MTT assays, a significant dose-dependent inhibition of cellular growth was observed, which was accompanied by decreased expression of the WNT downstream targets c-Myc and Cyclin D1. In flow cytometric analyses, the growth effects exerted by the inhibitors were shown to be due to a reduction of cellular proliferation combined with an increase of apoptosis. In summary, our data emphasize the pivotal role of WNT signaling in synovial sarcoma and indicate its functional dependence on the characteristic SS18/SSX translocations. Furthermore, our study demonstrates that targeting the WNT signaling pathway provides a specific, molecularly founded therapeutic strategy in the treatment of synovial sarcoma. Additional functional studies in vitro and in vivo are required to further understand the role of WNT signaling and its therapeutic applicability in synovial sarcomas. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3016. doi:1538-7445.AM2012-3016
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 2_Supplement ( 2018-01-15), p. B04-B04
    Abstract: Introduction: Myxoid liposarcoma (MLS) is the second most common type of liposarcoma and an aggressive disease with particular propensity to develop hematogenic metastases. Ninety percent of MLS are characterized by a reciprocal translocation t(12;16) (q13;p11), leading to the pathogenic gene fusion of FUS and DDIT3. The resulting chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS pathogenesis, although the specific mechanism of action remains to be substantiated. Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional relevance of FUS-DDIT3 in IGF-IR/PI3K/Akt signal transduction. Experimental Procedures: Immunohistochemical analyses of IGF-IR/PI3K/Akt signaling effectors and modulators were performed in a comprehensive cohort of clinical MLS specimens. FUS-DDIT3-dependent activation of the IGF-IR/PI3K/Akt signaling cascade was analyzed by siRNA and immunoblotting in vitro. Cell proliferation and FACS assays were performed in multiple tumor-derived MLS cell lines. An established MLS chorioallantoic membrane model (CAM) was employed for in vivo confirmation of the preclinical in vitro data. Results: In a significant subset of MLS specimens, immunohistochemical staining revealed elevated phosphorylation levels of various signaling components, representing a strong indication of activated IGF-IR/PI3K/Akt signaling to be a frequent feature in MLS. IGF-IR inhibition significantly suppressed the IGF-IR/PI3K/Akt signaling cascade, associated with impairment of MLS cell viability and induction of apoptosis in vitro and in vivo. Furthermore, siRNA-mediated knockdown of FUS-DDIT3 led to dephosphorylation of IGF-IR/PI3K/Akt signaling components, implying that the FUS-DDIT3 fusion protein is involved in the IGF-IR regulated signaling cascade. Conclusions: Our preclinical study emphasizes the pivotal role of the IGF-IR/PI3K/Akt signaling pathway in MLS pathogenesis and indicates its functional dependence on the MLS-specific FUS-DDIT3 fusion protein. Furthermore, our in vitro and in vivo results demonstrate that targeting the IGF-IR/PI3K/Akt signaling pathway provides a rational, molecularly founded therapeutic strategy in the treatment of MLS. Citation Format: Marcel Trautmann, Magdalene Alice Cyra, Christian Bertling, Ilka Isfort, Jasmin Menzel, Konrad Steinestel, Inga Grünewald, Bianca Altvater, Claudia Rossig, Pierre Åman, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Functional characterization of IGF-IR/PI3K/Akt signaling in myxoid liposarcoma [abstract]. In: Proceedings of the AACR Conference on Advances in Sarcomas: From Basic Science to Clinical Translation; May 16-19, 2017; Philadelphia, PA. Philadelphia (PA): AACR; Clin Cancer Res 2018;24(2_Suppl):Abstract nr B04.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 2003-2003
    Abstract: Introduction: Myxoid liposarcoma (MLS) represents the second most common subtype of liposarcoma. MLS is characterized by a chromosomal translocation t(12;16)(q13;p11) encoding a chimeric FUS-DDIT3 fusion gene. The resulting FUS-DDIT3 oncoprotein acts as a transcriptional dysregulator that was recently shown to mediate (i) IGF-IR/PI3K/AKT signaling and (ii) aberrant activation of the Hippo pathway effector YAP1 in MLS. This study was performed to analyze the functional interplay between IGF-IR/PI3K/AKT signals and aberrant YAP1 activity in MLS, aiming at a better functional understanding of MLS and the identification of specific molecular vulnerabilities. Experimental procedures: Immunohistochemical stainings of IGF-IR, IGF-II and YAP1 were performed in a cohort of MLS specimens (n=45). To study FUS-DDIT3-dependency in vitro, SCP-1 mesenchymal stem cells stably expressing FUS-DDIT3, and MLS cell lines expressing a doxycycline-inducible shRNA against FUS-DDIT3 were employed. Interactions between the IGF-IR/PI3K/AKT and Hippo/YAP1 pathways were investigated using RNAi approaches as well as the small molecule compounds BMS-754807 and BKM120; effects were analyzed by immunoblotting and TEAD luciferase reporter assays. To determine the impact of YAP1 in FUS-DDIT3-mediated oncogenic effects, qPCR analysis and adipogenic differentiation assays were performed. Results: Immunohistochemical analysis of human MLS tissue specimens demonstrated that expression of IGF-II and IGF-IR is associated with concomitant nuclear expression of YAP1 in a significant subset of MLS. Both, IGF-IR-dependent signals and YAP1 expression were shown to be functionally dependent on FUS-DDIT3. In MLS cell lines, inhibition of the IGF-IR/PI3K/AKT signaling cascade promoted downregulation of YAP1, accompanied by reduced TEAD transcriptional activity. Employing qPCR analyses, YAP1 was shown to co-regulate FUS-DDIT3 transcriptional targets and to be functionally involved in FUS-DDIT3-driven disruption of normal adipocytic differentiation. Conclusions: Our study provides evidence of a complex regulatory interplay in MLS with FUS-DDIT3-driven IGF-IR/PI3K/AKT signals acting as activators of nuclear YAP1 expression. Conversely, YAP1 contributes to shape FUS-DDIT3 effects on the MLS transcriptional landscape and functionally adds to an immature non-lipogenic phenotype. Our data contribute to the understanding of MLS biology and reveal specific molecular liabilities to be considered in therapeutic approaches of MLS. Citation Format: Ruth Berthold, Ilka Isfort, Jonas Breuer, Lorena Heinst, Thomas Kindler, Pierre Åman, Inga Grünewald, Eva Wardelmann, Thomas G. Grünewald, Florencia Cidre-Aranaz, Claudia Scholl, Stefan Fröhling, Marcel Trautmann, Wolfgang Hartmann. Oncogenic interplay of FUS-DDIT3 and YAP1 in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2003.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...