GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Medizin  (2)
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2422-2422
    Kurzfassung: A large body of research has demonstrated that the maternal immune system is elaborately regulated during pregnancy to establish immunological tolerance to the fetus. Although our previous works have revealed that female sex hormones, particularly estrogen, play pivotal roles in suppressing maternal B-lymphopoiesis, the precise molecular mechanisms that mediate their functions are largely unknown. Because T and B lymphocytes function coordinately in the adaptive immune system, the inhibition of B-lymphopoiesis during pregnancy should be involved, at least in part, in “maternal-fetal immune tolerance.” Understanding the molecular mechanisms of tolerance would contribute to the development of new methods to inhibit immune responses after organ transplantation, such as rejection by the host or graft-versus-host diseases. The goal of our present study is to identify the molecular pathways through which estrogen exerts its suppressive effect on B-lymphopoiesis. We performed global analyses of estrogen-inducible genes in bone marrow (BM) stromal cells and identified the secreted frizzled-related protein (sFRP) family. A sFRP1-immunoglobulin G (Ig) fusion protein inhibited early differentiation of B-cells originating from BM-derived hematopoietic stem/progenitor cells (HSPC) in culture (Yokota T. et al. Journal of Immunol, 2008). Conversely, sFRP1 deficiency in vivo caused dysregulation of HSPC homeostasis in BM and aberrant increase of peripheral B lymphocytes (Renström J. et al. Cell Stem Cell, 2009). Therefore, in the present study we generated sFRP1 transgenic chimera (TC) mice that produced high levels of circulating sFRP1 after birth to examine the influence of sFRP1 on adult lymphopoiesis in vivo. Further, we generated sFRP5 TC mice using the same procedure to determine whether there were functional differences or redundancies between sFRP1 and sFRP5. The two are most closely related isoforms among the sFRP family and are known to play redundant roles during embryonic development; however, their physiological function in the immune system is largely unknown. Unexpectedly, while only subtle change was detected in the lymphoid lineage of sFRP1 TC mice, we found that the number of B cells was significantly reduced in the sFRP5 TC mice. The frequency of B cells, which normally account for approximately 50% of peripheral leukocytes of wild-type (WT) mice, was reduced to less than 20% in the sFRP5 TC mice. The suppression was likely specific to the B lineage, because overexpression of sFRP5 did not affect myeloid, T, or NK cells. Compared with WT littermates, the body size of sFRP5 TC mice was slightly, but significantly smaller. Thymocyte counts were not affected. In contrast, the number of splenocytes, particularly those of the B lineage, significantly decreased. In BM of sFRP5 TC mice, early B-cell differentiation was inhibited, resulting in the accumulation of cells whose phenotype corresponds to those of common lymphoid progenitors (CLPs). Gene array analyses of the accumulated CLPs indicated that sFRP5 affects the expression of adaptive immune system-related genes. Further, the sFRP5 overexpression was found to induce the expression of Wnt and Notch-related molecules that regulate the integrity of HSPCs. To determine the physiological involvement of sFRP5 in the inhibition of early B-cell differentiation, we exploited mice lacking sFRP5. It is noteworthy that, although the level of sFRP5 expression was minimal in steady-state BM, it was markedly induced after estrogen treatment. We injected water-soluble β-estradiol into WT or sFRP5-null mice for 4 days and evaluated their lympho-hematopoiesis 12 h after the last injection. While the highly HSPC-enriched Lineage- Sca-1+ c-kitHi Flt3- fraction of WT mice was resistant to the treatment, the same fraction of sFRP5-null mice showed a declining trend. Further, although the CLP fraction was significantly reduced in both strains, CLPs of sFRP5-null mice were more sensitive to estrogen than those of WT. We also performed gene expression analyses of WT and sFRP5-null mice after the estrogen treatment. We found that estrogen induced the expression of Hes1 in HSPCs of WT but not sFRP5-null mice. Thus, we conclude that estrogen-inducible sFRP5 blocks the differentiation of HSPCs in BM to B-lymphocytes in the presence of high levels of estrogen, at least in part by activation of the Notch pathway. Disclosures: No relevant conflicts of interest to declare.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2013
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: European Journal of Immunology, Wiley, Vol. 45, No. 5 ( 2015-05), p. 1390-1401
    Kurzfassung: Mammals have evolved to protect their offspring during early fetal development. Elaborated mechanisms induce tolerance in the maternal immune system for the fetus. Female hormones, mainly estrogen, play a role in suppressing maternal lymphopoiesis. However, the molecular mechanisms involved in the maternal immune tolerance are largely unknown. Here, we show that estrogen‐induced soluble Frizzled‐related proteins (sFRPs), and particularly sFRP5, suppress B‐lymphopoiesis in vivo in transgenic mice. Mice overexpressing sFRP5 had fewer B‐lymphocytes in the peripheral blood and spleen. High levels of sFRP5 inhibited early B‐cell differentiation in the bone marrow (BM), resulting in the accumulation of cells with a common lymphoid progenitor (CLP) phenotype. Conversely, sFRP5 deficiency reduced the number of hematopoietic stem cells (HSCs) and primitive lymphoid progenitors in the BM, particularly when estrogen was administered. Furthermore, a significant reduction in CLPs and B‐lineage‐committed progenitors was observed in the BM of sfrp5 ‐null pregnant females. We concluded that, although high sFRP5 expression inhibits B‐lymphopoiesis in vivo, physiologically, it contributes to the preservation of very primitive lymphopoietic progenitors, including HSCs, under high estrogen levels. Thus, sFRP5 regulates early lympho‐hematopoiesis in the maternal BM, but the maternal–fetal immune tolerance still involves other molecular mechanisms that remain to be uncovered.
    Materialart: Online-Ressource
    ISSN: 0014-2980 , 1521-4141
    URL: Issue
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2015
    ZDB Id: 1491907-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...