GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 63, No. 7 ( 2019-07)
    Abstract: Urinary biomarkers are superior to serum creatinine for defining onset and extent of kidney injury. This study classifies the temporal predictive ability of biomarkers for vancomycin-induced kidney injury (VIKI) as defined by histopathologic damage. Male Sprague-Dawley rats ( n  = 125) were randomized to receive 150 to 400 mg/kg of body weight/day vancomycin via once or twice daily intraperitoneal injection over 1, 3, or 6 days. Urine was collected once during the 24 h prior to euthanasia or twice for rats treated for 6 days. Receiver operating characteristic (ROC) curves were employed to assess the urinary biomarker performances of kidney injury molecule 1 (KIM-1), clusterin, osteopontin (OPN), cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) to predict histopathologically defined VIKI (using a national standard pathological assessment scheme from hematoxylin and eosin stained kidneys). Urinary KIM-1, clusterin, and OPN outperformed cystatin C and NGAL with regard to sensitivity and specificity. For the earliest injury, urinary KIM-1 (area under the receiver operating characteristic curve [AUC], 0.662; P   〈  0.001) and clusterin (AUC, 0.706; P   〈  0.001) were the most sensitive for predicting even low-level histopathologic damage at 24 h compared to NGAL. KIM-1 and clusterin are the earliest and most sensitive predictors of VIKI. As injury progresses, KIM-1, clusterin, and OPN best define the extent of damage.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Clinical Infectious Diseases Vol. 76, No. 8 ( 2023-04-17), p. 1521-1522
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 76, No. 8 ( 2023-04-17), p. 1521-1522
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2002229-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 65, No. 10 ( 2021-09-17)
    Abstract: Vancomycin area under the concentration curve (AUC) is known to predict vancomycin-induced acute kidney injury (AKI). Data were analyzed from a rat model ( n  = 48) and two prospective clinical studies (PROVIDE [ n  = 263] and CAMERA2 [ n  = 291]). A logit-link model was used to calculate the multiplicative factors between the probability of AKI from clinical studies and in the rat. The rat was 2.7 to 4.2 times more sensitive to AKI between AUCs of 199.5 and 794.3 mg·h/liter, respectively.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 66, No. 5 ( 2022-05-17)
    Abstract: Vancomycin usage is often unavoidable in pregnant patients; however, literature suggests vancomycin can cross the placental barrier and reach the fetus. Understanding the mass transit of vancomycin to the fetus is important in pregnancy. We aimed to (i) identify a relevant population pharmacokinetic (PK) model for vancomycin in pregnancy and (ii) estimate PK parameters and describe the mass transit of vancomycin from mother to pup kidneys. Pregnant Sprague-Dawley rats (i.e., trimester 1 and trimester 3) received 250 mg/kg vancomycin once daily for three days through intravenous injection via an internal jugular vein catheter. Vancomycin concentrations in maternal plasma and pup kidneys were quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Multiple compartment models were fitted and assessed using a nonparametric approach with Pmetrics. A total of 10 vancomycin-treated rats and 48 pups contributed PK data. A 3-compartment model adjusted for trimester fit the data well (maternal plasma Bayesian, observed versus predicted R 2 = 0.978; pup kidney Bayesian, observed versus predicted R 2 = 0.999). The mean rate constant for vancomycin mass transit to the pup kidney was 0.72 h −1 for trimester 1 dams and 0.75 h −1 for trimester 3 dams. Median vancomycin concentrations in pup kidneys from trimester 3 were significantly higher than those in trimester 1 (8.62 versus 0.36 μg/mL, P   〈  0.001). Vancomycin transited to the fetus from the mother and was; kidney accumulation differed by trimester. This model may be useful for a translational understanding of vancomycin distribution in pregnancy to ensure efficacious and safe doses to both mother and fetus.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 63, No. 10 ( 2019-10)
    Abstract: Previous literature suggests that maternal vancomycin crosses the placental barrier to the fetus. Further, early animal studies indicated that kidney injury was not observed in the progeny. These studies were conducted prior to the availability of sensitive biomarkers for kidney injury. Therefore, a previous finding of no renal damage to the infant may be misleading. Vancomycin was administered intravenously to pregnant rats at a dose of 250 mg/kg of body weight/day ( N  = 6 per trimester) on three consecutive gestational days (GD) during trimesters 1, 2, and 3 (T1, T2, and T3, respectively) in three independent cohorts. The dams carried to term and delivered vaginally on GD 21. Kidneys were harvested from dams and pups and homogenized. Samples were prepared by protein precipitation and injected in a liquid chromatography tandem mass spectrometer, and vancomycin was quantified. The kidney tissue homogenate from dams and pups were analyzed for kidney injury molecule-1 (KIM-1). As trimesters progressed, the quantity of vancomycin increased linearly in the kidneys of both rat dams and pups ( P   〈  0.0001 for T1 and T3, P   〈  0.0001 for T2 and T3, and P   〈  0.0001 for T3 and T3 control for both rat dams and pups). KIM-1 concentrations in pup kidneys were significantly higher when dams were administered vancomycin in trimesters 1 ( P = 0.0001) and 2 ( P = 0.0024) than in controls in trimester 3. Data demonstrate persistence of vancomycin in maternal and rat pup kidneys in all three trimesters of pregnancy with associated damage to the kidney, as indicated by expression of KIM-1.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 64, No. 5 ( 2020-04-21)
    Abstract: We investigated dose-fractionated polymyxin B (PB) on acute kidney injury (AKI). PB at 12 mg of drug/kg of body weight per day (once, twice, and thrice daily) was administered in rats over 72 h. The thrice-daily group demonstrated the highest KIM-1 increase ( P  = 0.018) versus that of the controls ( P  = 0.99) and histopathological damage ( P  = 0.013). A three-compartment model best described the data (bias, 0.129 mg/liter; imprecision, 0.729 mg 2 /liter 2 ; R 2 , 0.652,). Area under the concentration-time curve at 24 h (AUC 24 ) values were similar ( P  = 0.87). The thrice-daily dosing scheme resulted in the most PB-associated AKI in a rat model.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 67, No. 8 ( 2023-08-17)
    Abstract: Recent clinical studies have reported additive nephrotoxicity with the combination of vancomycin and piperacillin-tazobactam. However, preclinical models have failed to replicate this finding. This study assessed differences in iohexol-measured glomerular filtration rate (GFR) and urinary injury biomarkers among rats receiving this antibiotic combination. Male Sprague-Dawley rats received either intravenous vancomycin, intraperitoneal piperacillin-tazobactam, or both for 96 h. Iohexol-measured GFR was used to quantify real-time kidney function changes. Kidney injury was evaluated with the urinary biomarkers kidney injury molecule-1 (KIM-1), clusterin, and osteopontin. Compared to the control, rats that received vancomycin had numerically lower GFRs after drug dosing on day 3. Rats in this group also had elevations in urinary KIM-1 on experimental days 2 and 4. Increasing urinary KIM-1 was found to correlate with decreasing GFR on experimental days 1 and 3. Rats that received vancomycin plus piperacillin-tazobactam (vancomycin+piperacillin-tazobactam) did not exhibit worse kidney function or injury biomarkers than rats receiving vancomycin alone. The combination of vancomycin and piperacillin-tazobactam does not cause additive nephrotoxicity in a translational rat model. Future clinical studies investigating this antibiotic combination should employ more sensitive biomarkers of kidney function and injury, similar to those utilized in this study.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 66, No. 3 ( 2022-03-15)
    Abstract: Clinical studies have reported additive nephrotoxicity associated with the combination of vancomycin (VAN) and piperacillin-tazobactam (TZP). This study assessed differences in glomerular filtration rate (GFR) and urinary biomarkers between rats receiving VAN and those receiving VAN + TZP. Male Sprague-Dawley rats ( n  = 26) were randomized to receive 96 h of intravenous VAN at 150 mg/kg/day, intraperitoneal TZP at 1,400 mg/kg/day, or VAN + TZP. Kidney function was evaluated using fluorescein-isothiocyanate sinistrin and a transdermal sensor to estimate real-time glomerular filtration rate (GFR). Kidney injury was evaluated via urinary biomarkers, including kidney injury molecule-1 (KIM-1), clusterin, and osteopontin. Compared to a saline control, only rats in the VAN group showed significant declines in GFR by day 4 (−0.39 mL/min/100 g body weight; 95% confidence interval [CI] , −0.68 to −0.10; P  = 0.008). When the VAN + TZP and VAN alone treatment groups were compared, significantly higher urinary KIM-1 marginal linear predictions were observed in the VAN alone group on day 1 (18.4 ng; 95% CI, 1.4 to 35.3; P  = 0.03), day 2 (27.4 ng; 95% CI, 10.4 to 44.3; P  = 0.002), day 3 (18.8 ng; 95% CI, 1.9 to 35.8; P  = 0.03), and day 4 (23.2 ng; 95% CI, 6.3 to 40.2; P  = 0.007). KIM-1 was the urinary biomarker that most correlated with decreasing GFR on day 3 (Spearman’s rho, −0.45; P  = 0.022) and day 4 (Spearman’s rho, −0.41; P  = 0.036). Kidney function decline and increased KIM-1 were observed among rats that received VAN only but not those that received TZP or VAN + TZP. The addition of TZP to VAN does not worsen kidney function or injury in our translational rat model.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 67, No. 2 ( 2023-02-16)
    Abstract: Vancomycin-induced kidney injury is common, and outcomes in humans are well predicted by animal models. This study employed our translational rat model to investigate temporal changes in the glomerular filtration rate (GFR) and correlations with kidney injury biomarkers related to various vancomycin dosing strategies. First, Sprague-Dawley rats received allometrically scaled loading doses or standard doses. Rats that received a loading dose had low GFRs and increased urinary injury biomarkers (kidney injury molecule 1 [KIM-1] and clusterin) that persisted through day 2 compared to those that did not receive a loading dose. Second, we compared low and high allometrically scaled vancomycin doses to a positive acute kidney injury control of high-dose folic acid. Rats in both the low- and high-dose vancomycin groups had higher GFRs on all dosing days than the positive-control group. When the two vancomycin groups were compared, rats that received the low dose had significantly higher GFRs on days 1, 2, and 4. Compared to low-dose vancomycin, the KIM-1 was elevated among rats in the high-dose group on dosing day 3. The GFR correlated most closely with the urinary injury biomarker KIM-1 on all experimental days. Vancomycin loading doses were associated with significant losses of kidney function and elevations of urinary injury biomarkers. In our translational rat model, both the degree of kidney function decline and urinary biomarker increases corresponded to the magnitude of the vancomycin dose (i.e., a higher dose resulted in worse outcomes).
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Clinical Infectious Diseases Vol. 71, No. 2 ( 2020-07-11), p. 426-432
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 71, No. 2 ( 2020-07-11), p. 426-432
    Abstract: Vancomycin and piperacillin-tazobactam are 2 of the most commonly prescribed antibiotics in hospitals. Recent data from multiple meta-analyses suggest that the combination increases the risk for vancomycin-induced kidney injury when compared to alternative viable options. However, these studies are unable to prove biologic plausibility and causality as randomized controlled trials have not been performed. Furthermore, these studies define acute kidney injury according to thresholds of serum creatinine rise. Serum creatinine is not a direct indicator of renal injury, rather a surrogate of glomerular function. More reliable, specific, and sensitive biomarkers are needed to truly define if there is a causal relationship with increased toxicity when piperacillin-tazobactam is added to vancomycin. This viewpoint will explore the available evidence for and against increased acute kidney injury in the setting of vancomycin and piperacillin-tazobactam coadministration.
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2002229-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...