GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 318-318
    Abstract: The discovery that thalidomide derivatives recruit the E3 ligase CRBN to induce neomorphic degradation of proteins critical for multiple myeloma (MM) cells stimulated the research into proteolysis-targeting chimeric compounds (PROTACs), led to development of several CRBN- or VHL-based PROTACs against various oncoproteins and put a new spotlight on the biology and therapeutic targeting of E3 ligases in human neoplasias. However, so far only a few of the ~600 known/presumed E3 ligases have been leveraged for generation of PROTACs. The mechanisms regulating the function of most E3 ligases have not been systematically examined. Because the function of an E3 ligase is considered essential for anti-tumor activity of its respective PROTACs, we applied CRISPR knock-out (KO) systems to identify candidate regulators of E3 ligase function, via characterizing the the network of genes which modulate MM cell responses to PROTACs. We thus performed genome-scale CRISPR-based gene editing (for loss-of-function, LOF) studies in MM.1S cells treated with PROTACs targeting BET bromodomain proteins through MDM2 (A1874), CRBN (dBET6) or VHL (ARV-771 or MZ-1) or targeting CDK9 through CRBN (Thal-SNS-032); and validated key hits with individual sgRNAs in different MM cell lines. The top individual LOF events conferring resistance to PROTACs did not involve a compensatory mechanism or "work-around" the loss of the respective oncoprotein, but were predominantly associated with LOF of the respective E3 ligase; or with LOF for genes with known or plausible role in regulating the respective E3 ligases. For instance, sgRNAs against members of the COP9 signalosome complex decreased MM cell responses to CRBN- and (to a lesser extent) VHL-, but not MDM2-based PROTACs. PROTACs leveraging different E3 ligases were regulated by different cullin ring ligase (CRL) complex members (e.g. CUL2, RBX1, TCEB1, TCEB2 for VHL- vs. DDB1 for CRBN- vs. no CRL member for MDM2-based PROTACs) or E2 conjugating enzymes (UBE2R2 vs. UBE2G1 for VHL- vs. CRBN-based PROTACs). Collectively, these results suggest that MDM2 regulation is largely CRL- and COP9-signalosome independent; while VHL regulation is less COP9 signalosome-dependent compared to CRBN. These mechanistic differences suggest that PROTACs targeting the same oncoprotein through different E3 ligases should not be associated with cross-resistance, a result which we validated in experiments involving sequential administration of different PROTACs against BRD4/3/2. In turn, this observation implied that developing PROTACs that leverage a more extended spectrum of E3 ligases may facilitate sequential uses of existing and these new PROTACs to delay or prevent treatment resistance. Building on results of our genome-scale CRISPR essentiality screens, we examined the dependency landscape of known E3 ligases of MM (n=20 cell lines) and 500+ non-MM cell lines. CRBN is redundant for nearly all MM or non-MM cell lines tested, while most other E3 ligases leveraged for PROTACs (e.g. MDM2, BIRC2, DCAF15, DCAF16, RNF114) are essential for only modest or small subsets of human cancer cell lines, suggesting that resistance to respective PROTACs may readily emerge through LOF of these E3 ligases without major fitness cost to tumor cells. We thus sought to identify E3 ligases which are highly expressed in subsets of human tumor cell lines (at levels well above the large majority of normal tissues) and are major dependencies for these "high expressor" cell lines: we identified MDM2 as a major dependency for p53-wild-type cell lines (consistent with MDM2 role as E3 ligase for p53) and we validated this result by documenting the preferential activity of a MDM2-based PROTAC for BRD4/3/2 against p53 wild-type cells. We also identified other E3 ligases genes with well-known roles in tumor cell biology (e.g. members of anaphase promoting complex/cyclosome); as well as E3 ligases (e.g. KCMF1, RNF4) which, to our knowledge, have not been leveraged for design of PROTACs, but warrant consideration given their patterns of essentiality in "high expressor" tumor cells. Our study provides insights on differential regulation and distinct patterns of essentiality for different E3 ligases and informs the design of new PROTACs which leverage different E3 ligases to help delay/overcome treatment resistance in MM and beyond. Disclosures Schlossman: Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited: Employment. Richardson:Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees. Ebert:Broad Institute: Other: Contributor to a patent filing on this technology that is held by the Broad Institute.; Celgene: Research Funding; Deerfield: Research Funding. Tsherniak:Tango Therapeutics: Consultancy. Boise:Genentech Inc.: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Honoraria, Research Funding. Gray:Gatekeeper, Syros, Petra, C4, B2S and Soltego.: Equity Ownership; Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Her2llc, Deerfield and Sanofi.: Equity Ownership, Research Funding. Mitsiades:Takeda: Other: employment of a relative ; Ionis Pharmaceuticals: Honoraria; Fate Therapeutics: Honoraria; Arch Oncology: Research Funding; Sanofi: Research Funding; Karyopharm: Research Funding; Abbvie: Research Funding; TEVA: Research Funding; EMD Serono: Research Funding; Janssen/Johnson & Johnson: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Immunity, Elsevier BV, Vol. 38, No. 2 ( 2013-02), p. 225-236
    Type of Medium: Online Resource
    ISSN: 1074-7613
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 2001966-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Infection and Immunity, American Society for Microbiology, Vol. 68, No. 6 ( 2000-06), p. 3772-3775
    Abstract: A minitransposon mutant of Salmonella enterica serovar Typhimurium SR-11, SR-11 Fad − , is unable to utilize gluconeogenic substrates as carbon sources and is avirulent and immunogenic when administered perorally to BALB/c mice (M. J. Utley et al., FEMS Microbiol. Lett., 163:129–134, 1998). Here, evidence is presented that the mutation in SR-11 Fad − that renders the strain avirulent is in the cra gene, which encodes the Cra protein, a regulator of central carbon metabolism.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2000
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 117, No. 1 ( 2011-01-06), p. 211-220
    Abstract: The multiple myeloma SET domain (MMSET) protein is overexpressed in multiple myeloma (MM) patients with the translocation t(4;14). Although studies have shown the involvement of MMSET/Wolf-Hirschhorn syndrome candidate 1 in development, its mode of action in the pathogenesis of MM is largely unknown. We found that MMSET is a major regulator of chromatin structure and transcription in t(4;14) MM cells. High levels of MMSET correlate with an increase in lysine 36 methylation of histone H3 and a decrease in lysine 27 methylation across the genome, leading to a more open structural state of the chromatin. Loss of MMSET expression alters adhesion properties, suppresses growth, and induces apoptosis in MM cells. Consequently, genes affected by high levels of MMSET are implicated in the p53 pathway, cell cycle regulation, and integrin signaling. Regulation of many of these genes required functional histone methyl-transferase activity of MMSET. These results implicate MMSET as a major epigenetic regulator in t(4;14)+ MM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Psychiatric Association Publishing ; 2009
    In:  The Journal of Neuropsychiatry and Clinical Neurosciences Vol. 21, No. 4 ( 2009-10), p. 467-468
    In: The Journal of Neuropsychiatry and Clinical Neurosciences, American Psychiatric Association Publishing, Vol. 21, No. 4 ( 2009-10), p. 467-468
    Type of Medium: Online Resource
    ISSN: 0895-0172 , 1545-7222
    RVK:
    Language: English
    Publisher: American Psychiatric Association Publishing
    Publication Date: 2009
    detail.hit.zdb_id: 1474283-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Brain Research, Elsevier BV, Vol. 608, No. 1 ( 1993-04), p. 1-6
    Type of Medium: Online Resource
    ISSN: 0006-8993
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1993
    detail.hit.zdb_id: 1462674-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 1990
    In:  Brain Research Vol. 509, No. 1 ( 1990-02), p. 111-118
    In: Brain Research, Elsevier BV, Vol. 509, No. 1 ( 1990-02), p. 111-118
    Type of Medium: Online Resource
    ISSN: 0006-8993
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1990
    detail.hit.zdb_id: 1462674-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1367-1367
    Abstract: Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases (e.g. CRBN and VHL) to induce neopmorphic ubiquitination and proteasomal degradation of target oncoproteins, with potent preclinical activity against diverse neoplasias. Despite intense recent efforts to develop pharmacological "degraders" against many different oncoproteins, the mechanisms regulating tumor cell sensitivity to different classes of these "degraders" remain incompletely understood. To address this question in an unbiased manner, we performed genome-scale CRISPR/Cas9-based gene editing loss-of-function (LOF) studies in MM.1S multiple myeloma (MM) cells treated with CRBN-mediated degraders of BET bromodomain proteins (dBET6) or CDK9 (Thal-SNS-032); or with VHL-mediated degraders of BET bromodomain proteins (ARV-771 or MZ-1). We observed that MM cell resistance to any of these "degraders" does not involve genes with recurrent LOF in MM patients and association with high-risk MM (e.g. for TP53, PTEN, negative regulators of cell cycle, et.c.), suggesting that these degraders may exhibit activity against tumor cells with prognostically adverse genetic features. In tumor cells resistant to the CRBN-mediated degraders dBET6 and Thal-SNS-032, we observed significant enrichment of sgRNAs targeting CRBN itself or (to a lesser extent) other components or regulators of its cullin RING ligase (CRLCUL4A) complex, including members of the COP9 signalosome (COPS7A, COPS7B, COPS2, COPS3, COPS8, GPS1, etc.), DDB1, or the E2 ubiquitin conjugating enzyme UBE2G1. In tumor cells resistant to the VHL-mediated degraders MZ-1 and ARV-771, we observed pronounced enrichment of sgRNAs for CUL2, VHL itself, other members (e.g. RBX1, elongin B/C [TCEB1, TCEB2] of the CUL2 complex with VHL), as well as COP9 signalosome genes (COPS7B, COPS8) and UBE2R2. We also validated, using individual sgRNAs for several of these candidate genes that their CRISPR knockout can decrease tumor cell response to dBET6 and Thal-SNS-032 treatment (e.g. for CRBN, COPS7B, COPS2, or COPS8) or MZ-1 and ARV-771 (e.g. for VHL, COP7B and COPS8). Notably, the sgRNAs against COP9 signalosome genes conferred less pronounced decrease in sensitivity to VHL-, than CRBN-based, degraders, suggesting that COP9 signalosome loss has differential roles in the function of CUL4ACRBN vs. CUL2VHL and potentially other CRL complexes. Tumor cells isolated from our CRISPR knockout screens with confirmed resistance to a given degrader were then treated with other degraders operating through the same or different E3 ligase; and against the same or different oncoprotein: we observed cross-resistance between degraders operating through the same E3 ligase against different oncoproteins, but not for degraders targeting the same protein via different E3 ligase/CRLs: this result is consistent with our observation for substantial gene-level differences (despite pathway-level similarities) for resistance mechanisms for CRBN- vs. VHL-based degraders. In conclusion, our study systematically defined at genome-scale the resistance mechanisms of tumor cells against degraders which leverage the same E3 ligase against different targets; or target the same oncoprotein through different E3 ligases/CRL complexes. We observed that for multiple types of degraders, tumor cell resistance is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein. The observed pathway-level similarities and major individual gene-level differences in resistance mechanisms for CRBN- and VHL-mediated degraders likely reflects the different composition and regulation of the respective CRL complexes mediating the action of these classes of degraders Our observations suggest that preventing or delaying resistance to pharmacological degradation of oncoproteins may require concurrent or sequential/alternating use of degraders operating through different E3 ligases and ideally, different CRL complexes; while synthetic lethal strategies to prevent COP9 signalosome LOF may also be contemplated to counteract a common, but quantitatively less pronounced, potential mechanism of resistance for several different classes of degraders. Collectively, our study highlights important new directions in the development of new pharmacological degraders for blood cancers and other neoplasias. Disclosures Richardson: Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Licht:Celgene: Research Funding. Boise:Abbvie: Consultancy; AstraZeneca: Honoraria. Gray:C4 Therapeutics: Consultancy. Mitsiades:TEVA: Research Funding; Janssen/ Johnson & Johnson: Research Funding; EMD Serono: Research Funding; Takeda: Other: employment of a relative; Abbvie: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2015
    In:  Psychosomatic Medicine Vol. 77, No. 3 ( 2015-04), p. 279-291
    In: Psychosomatic Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 77, No. 3 ( 2015-04), p. 279-291
    Type of Medium: Online Resource
    ISSN: 0033-3174
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Psychiatry Research, Elsevier BV, Vol. 242 ( 2016-08), p. 388-394
    Type of Medium: Online Resource
    ISSN: 0165-1781
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 1500675-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...