GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 22_Supplement ( 2020-11-15), p. PO-011-PO-011
    Abstract: Somatic copy number alterations that result in loss of tumor suppressor gene function are important drivers of tumorigenesis. However, few existing therapeutic options to target oncogenic processes evoked by tumor suppressor gene inactivation exist. The discovery of synthetic lethal interactions with genetic drivers of cancer may yield new therapeutic strategies with cancer selective potential. We examined genome-scale CRISPR-SpCas9 and RNA interference screens to uncover new synthetic lethal vulnerabilities associated with the loss of common tumor suppressor genes (TSGs). The ATPases Vacuolar protein sorting 4 homolog A (VPS4A) and B (VPS4B) scored as strong synthetic lethal dependencies, with VPS4A selectively essential in cancers harboring loss of VPS4B adjacent to SMAD4 and VPS4B required in tumors with co-deletion of VPS4A and CDH1 (encoding E-cadherin). VPS4B resides 12.3 Mb away from the SMAD4 TSG on chromosome 18q and is lost in approximately 33% of all cancers, suggesting broad clinical applicability. Moreover, VPS4B is commonly lost in pancreatic cancer due to the frequent loss of SMAD4, highlighting VPS4A represents a promising target for this deadly cancer. VPS4A and VPS4B function as AAA ATPases forming a multimeric protein complex within the endosomal sorting complex required for transport (ESCRT) pathway to regulate membrane remodeling in a range of cellular processes. VPS4A suppression in cells with VPS4B/SMAD4 loss led to accumulation of ESCRT-III filaments, cytokinesis defects, nuclear deformation and micronucleation, which ultimately resulted in G2/M cell cycle arrest and apoptosis. Furthermore, upon VPS4A suppression, we observed potent in vivo tumor regression, which led to extended survival, in mouse subcutaneous xenograft models utilizing a pancreatic or rhabdomyosarcoma cancer cell line harboring VPS4B loss. CRISPR-SpCas9 screening and integrative genomic analysis revealed other ESCRT members, regulators of abscission and interferon signaling as modifiers of VPS4A dependency. Using the most comprehensive available CRISPR-SpCas9 and RNA-interference screening datasets to date, we provide a compendium of synthetic lethal vulnerabilities with TSG loss and credential VPS4A as a new and promising therapeutic target in cancers with VPS4B/SMAD4 deletion. Citation Format: Jasper E. Neggers, Brenton R. Paolella, Adhana Asfaw, Michael V. Rothberg, Thomas A. Skipper, Radha L. Kalekar, Michael J. Krill-Burger, Neekesh V. Dharia, Guillaume Kugener, Adam D. Durbin, Annan Yang, Nancy Dumont, Yvonne Y. Li, Brian M. Wolpin, Federica Piccioni, David E. Root, Jesse S. Boehm, Andrew D. Cherniack, Aviad Tsherniak, Andrew L. Hong, William C. Hahn, Kimberly Stegmaier, Todd R. Golub, Francisca Vazquez, Andrew J. Aguirre. Synthetic lethal interaction between the ESCRT paralog enzymes VPS4A and VPS4B in SMAD4 or CDH1-deleted cancers [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2020 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2020;80(22 Suppl):Abstract nr PO-011.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 53, No. 12 ( 2021-12), p. 1664-1672
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 3_suppl ( 2014-01-20), p. 62-62
    Abstract: 62 Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. SNP arrays offer the opportunity to evaluate segmental aneuploidy at high resolution throughout the genome. Methods: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. Results: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6 , KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p=0.032, log rank test) and time to first recurrence (p=0.010, log rank test) compared to those with intermediate CNA counts. In multivariate Cox analysis, there was a 3.4-fold (95% CI, 1.1–10.4) increased hazard of death among cases with intermediate CNA counts after adjusting for other predictors of survival (N stage, angiolymphatic invasion and tumor size). Similarly, there was a 7.3-fold (95% CI, 1.5-34) increased risk of recurrence for these patients. Conclusions: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count).The non-monotonic association of segmental aneuploidy with survival has been described in other tumors such as breast and ovarian carcinoma. The degree of segmental aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 940-940
    Abstract: Recurrent somatic mutations in core components and modulators of the cohesin ring - a multimeric protein complex that forms a ring structure around DNA and provides spatial genome organization - have been identified across multiple cancer types, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), where they are associated with poor overall survival. Cohesin proteins are involved in sister chromatid cohesion, chromatin organization into loops, transcriptional activation, and DNA damage repair. The mechanisms underlying clonal expansion of these driver mutations are unknown and no therapies have selective efficacy in cohesin-mutant cancers. We sought to determine the effects of mutations in the most frequently mutated cohesin subunit, STAG2, on cohesin complex composition using immunoprecipitation followed by quantitative mass spectrometry (IP-MS), genetic dependencies of STAG2-mutant cells by genome-wide CRISPR screening, and mutant cohesin association with chromatin using chromatin immunoprecipitation followed by sequencing (ChIP-Seq). Our goal was to understand how these mutations contribute to cellular transformation and to identify possible therapeutic targets. Applying IP-MS in AML cell lines engineered with different STAG2 mutations, we identified and validated a switch from STAG2- to its paralog STAG1-containing cohesin complexes. In addition, we observed changes in the interaction of the mutant cohesin complex with proteins involved in DNA repair and replication, including PARP1, and RNA-mediated interaction with RNA splicing machinery, including SF3B family members. We next hypothesized that these cohesin-dependent alterations could lead to shifts in genetic dependencies. Using genome-scale CRISPR-Cas9 screens, we identified preferential dependency of STAG2-mutant cells on STAG1, consistent with our proteomics studies. We also found a striking concordance between additional cellular processes highlighted by IP-MS experiments and observed increased dependency of STAG2-mutant cells on DNA damage repair and mRNA processing. Therefore, STAG2 mutations lead to changes in cohesin complex structure and alter interactions with proteins involved in DNA damage, replication, and RNA modification, which become genetic dependencies in this context. Prompted by this concordance, we evaluated DNA replication, DNA damage and splicing in cohesin-mutant cells. We observed a 4-fold increase in replication fork stalling in STAG2-mutant cells, which was associated with accumulation of double strand DNA breaks and activation of the ATR and ATM DNA damage checkpoints. STAG2-mutant cells demonstrated ~100-fold increased sensitivity to the PARP inhibitor talazoparib, which was consistent across models of other cohesin-mutant subunits. In addition, cohesin-mutant cells showed aberrant splicing and increased sensitivity to treatment with SF3B1 inhibitors E7107 and H3B-8800. In aggregate, genetic or pharmacologic perturbation of DNA damage repair or splicing created a synthetic vulnerability for cohesin-mutant cells in vitro and in vivo. Finally, we explored how STAG1-containing complexes alter cohesin-mediated genome compartmentalization in cohesin-mutant cells. Using ChIP-Seq, we observed that STAG2 loss leads to a global decrease in cohesin binding to chromatin, including at sites of insulated neighborhood boundaries, with subsequent gene expression changes. Loss of cohesin binding was associated with increased enhancer activity and super-enhancer expansion in STAG2-mutant cells. In addition, we identified changes in the co-localization of the mutant cohesin complex with super-enhancer enriched factors, DNA damage repair and splicing machinery. These findings are consistent with a model in which wild type and mutant cohesin complexes, defined by their unique composition and patterns of chromatin binding and architecture, have differential abilities to maintain chromatin organization as it relates to spatial organization of super-enhancers, coactivators and transcription factors, as well as DNA damage repair and splicing machinery. Perturbation of any of these components, which have been recently proposed to form phase-separated nuclear bodies, creates vulnerabilities that may be exploited therapeutically with existing drugs in patients with cohesin-mutated malignancies. Disclosures Abraham: Syros Pharmaceuticals: Equity Ownership. Seiler:H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. D'Andrea:Intellia Therapeutics: Consultancy; Cedilla Therpeutics: Consultancy, Equity Ownership; EMD-Serono: Consultancy, Research Funding; Sierra: Consultancy, Research Funding; Ideaya: Consultancy, Equity Ownership; Lilly: Consultancy, Research Funding; Formation Biologics: Consultancy. Young:Omega Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Syros Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Camp4 Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. LB-053-LB-053
    Abstract: Somatic copy number alterations that result in loss of tumor suppressor gene function are important drivers of tumorigenesis. However, few existing therapeutic options to target oncogenic processes evoked by tumor suppressor gene inactivation exist. The discovery of synthetic lethal interactions with genetic drivers of cancer may yield new therapeutic strategies with cancer selective potential. We examined genome-scale CRISPR-SpCas9 and RNA interference screens to uncover new synthetic lethal vulnerabilities associated with the loss of common tumor suppressor genes (TSGs). Vacuolar protein sorting 4 homolog A (VPS4A) scored as a strong, selective dependency in cancer cells with genomic loss of the SMAD4 tumor suppressor due to co-deletion of VPS4A's paralog gene, VPS4B. VPS4B resides 12.3 Mb away from the SMAD4 TSG on chromosome 18q and is lost in approximately 33% of all cancers, suggesting broad clinical applicability. VPS4A and VPS4B function as AAA ATPases forming a multimeric protein complex within the endosomal sorting complex required for transport (ESCRT) pathway to regulate membrane remodeling in a range of cellular processes. VPS4A suppression in cells with VPS4B/SMAD4 loss led to accumulation of ESCRT-III filaments, cytokinesis defects, nuclear deformation and micronucleation, which ultimately resulted in G2/M cell cycle arrest and apoptosis. Furthermore, upon VPS4A suppression, we observerd potent in vivo tumor regression, which led to extended survival, in mouse subcutaneous xenograft models with human cancer cell lines harboring VPS4B loss. Finally, genome-scale CRISPR-SpCas9 loss-of-function screening revealed other ESCRT pathway members and regulators of cellular abscission as modifiers of VPS4A dependency. Using the most comprehensive available CRISPR-SpCas9 and RNA-interference screening datasets to date, we provide a compendium of synthetic lethal vulnerabilities with TSG loss and credential VPS4A as a new and promising therapeutic target in cancers with VPS4B/SMAD4 deletion. Citation Format: Jasper E. Neggers, Brenton R. Paolella, Adhana Asfaw, Michael V. Rothberg, Thomas A. Skipper, Radha L. Kalekar, John M. Krill-Burger, Andrew L. Hong, Guillaume Kugener, Jeremie Kalfon, Annan Yang, Chen Yuan, Nancy Dumont, Alfredo Gonzalez, Mai Abdusamad, Yvonne Y. Li, Liam F. Spurr, Westley W. Wu, Federica Piccioni, Brian M. Wolpin, David E. Root, Jesse S. Boehm, Andrew D. Cherniack, Aviad Tsherniak, Todd R. Golub, Francisca Vazquez, Andrew J. Aguirre. VPS4A is a synthetic lethal target in VPS4B-deficient cancers due to co-deletion with SMAD4 [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr LB-053.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. B10-B10
    Abstract: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood. Despite multimodality therapy and trials of molecularly targeted agents, limited improvements in overall survival have been realized for patients with high-risk disease. Thus, we aimed to determine the landscape of tumor-specific gene dependencies that underlie tumorigenesis in RMS and therefore provide a valuable group of targets for the development of novel therapeutics. Using unbiased genome-scale CRISPR-Cas9 approaches, we identified a set of RMS-specific tumor dependencies involved in tumor cell growth and survival. RMS dependencies were enriched for nucleic acid binding proteins, including transcription factors (TFs). We then used genome-wide chromatin-immunoprecipitation coupled to high-throughput sequencing analysis to demonstrate that a small number of essential TFs—MYCN, MYOD1, TCF12, SOX8, ZEB2, ZNF217, and SIX1—are members of the transcriptional core regulatory circuitry (CRC) that maintains the malignant cell state of RMS. Both c-MYC and MYCN were associated with gene and enhancer copy number increases in cell lines and primary tumors and represented strong dependencies in the RMS cell lines screened. c-MYC and MYCN function to similarly invade and regulate the CRC in respectively dependent cells. To disable the CRC, we tested A485, an inhibitor of the histone acetyltransferase enzymes involved in the establishment of super-enhancer elements that are associated with high level expression of the CRC factors. A485 caused a reversible and rapid loss of CRC factor and c-MYC and/or MYCN expression, and prolonged treatment resulted in cell cycle arrest, differentiation, and apoptosis in vitro and in vivo. This phenotype is rescued by exogenous re-expression of either c-MYC or MYCN in a manner insensitive to A485, indicating a mechanism by which these genes subvert a myogenic CRC to produce an oncogenic fate. This study defines a common set of critical dependency genes in RMS and identifies key genomic events surrounding the c-MYC and MYCN loci that lead to elevated expression and tumorigenesis. Citation Format: Adam D. Durbin, Guillaume Kugener, Mark W. Zimmerman, Chuan Yan, Neekesh V. Dharia, Elizabeth S. Frank, Xiang Chen, Ken N. Ross, Brenton Paolella, Michael Krill-Burger, David E. Root, Jesse S. Boehm, Francisca Vazquez, Andrew L. Hong, Aviad Tsherniak, David M. Langenau, William C. Hahn, Todd R. Golub, Brian J. Abraham, Richard A. Young, A. Thomas Look, Kimberly Stegmaier. Rhabdomyosarcoma requires MYC family genomic events to pathogenically subvert core-regulatory circuitry [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr B10.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...