GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 3 ( 2017-02-01), p. 697-706
    Abstract: Purpose: In preclinical studies, the PARP inhibitor veliparib enhanced the antileukemic action of temozolomide through potentiation of DNA damage. Accordingly, we conducted a phase 1 study of temozolomide with escalating doses of veliparib in patients with relapsed, refractory acute myeloid leukemia (AML) or AML arising from aggressive myeloid malignancies. Experimental Design: Patients received veliparib [20–200 mg once a day on day 1 and twice daily on days 4–12 in cycle 1 (days 1–8 in cycle ≥2)] and temozolomide [150–200 mg/m2 daily on days 3–9 in cycle 1 (days 1–5 in cycle ≥2)] every 28 to 56 days. Veliparib pharmacokinetics and pharmacodynamics [ability to inhibit poly(ADP-ribose) polymer (PAR) formation and induce H2AX phosphorylation] were assessed. Pretreatment levels of MGMT and PARP1 protein, methylation of the MGMT promoter, and integrity of the Fanconi anemia pathway were also examined. Results: Forty-eight patients were treated at seven dose levels. Dose-limiting toxicities were oral mucositis and esophagitis lasting & gt;7 days. The MTD was veliparib 150 mg twice daily with temozolomide 200 mg/m2 daily. The complete response (CR) rate was 17% (8/48 patients). Veliparib exposure as well as inhibition of PAR polymer formation increased dose proportionately. A veliparib-induced increase in H2AX phosphorylation in CD34+ cells was observed in responders. Three of 4 patients with MGMT promoter methylation achieved CR. Conclusions: Veliparib plus temozolomide is well tolerated, with activity in advanced AML. Further evaluation of this regimen and of treatment-induced phosphorylation of H2AX and MGMT methylation as potential response predictors appears warranted. Clin Cancer Res; 23(3); 697–706. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 1101-1103
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 119, No. 1 ( 2012-01-05), p. 55-63
    Abstract: Tipifarnib (T) exhibits modest activity in elderly adults with newly diagnosed acute myelogenous leukemia (AML). Based on preclinical synergy, a phase 1 trial of T plus etoposide (E) yielded 25% complete remission (CR). We selected 2 comparable dose levels for a randomized phase 2 trial in 84 adults (age range, 70-90 years; median, 76 years) who were not candidates for conventional chemotherapy. Arm A (T 600 mg twice a day × 14 days, E 100 mg days 1-3 and 8-10) and arm B (T 400 mg twice a day × 14 days, E 200 mg days 1-3 and 8-10) yielded similar CR, but arm B had greater toxicity. Total CR was 25%, day 30 death rate 7%. A 2-gene signature of high RASGRP1 and low aprataxin (APTX) expression previously predicted for T response. Assays using blasts from a subset of 40 patients treated with T plus E on this study showed that AMLs with a RASGRP1/APTX ratio of more than 5.2 had a 78% CR rate and negative predictive value 87%. This ratio did not correlate with outcome in 41 patients treated with conventional chemotherapies. The next T-based clinical trials will test the ability of the 2-gene signature to enrich for T responders prospectively. This study is registered at www.clinicaltrials.gov as #NCT00602771.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: British Journal of Haematology, Wiley, Vol. 158, No. 2 ( 2012-07), p. 198-207
    Abstract: The prognosis of patients with relapsed and refractory acute leukaemia ( RRAL ) is very poor. Forty patients with RRAL were enroled [28 acute myeloid leukaemia ( AML ), 12 acute lymphoblastic leukaemia ( ALL )] in this Phase 1 dose‐escalation trial of daily‐infused clofarabine ( CLO ) followed by cyclophosphamide ( CY ) for four consecutive days ( CLO ‐ CY x4). The median age was 48·5 years. The median number of prior regimens was 2 (range 1–5), and 6/40 patients (15%) had prior allogeneic haematopoietic stem cell transplant. 28/40 patients (70%) had adverse genetic features. 6/40 patients (15%) died within 60 d of induction (two infections, four progressive disease). The average time to neutrophil recovery (absolute neutrophil count ≥0·5 × 10 9 /l was 34 d, (range, 17–78). The overall response rate ( ORR ) was 33% (13/40), with seven complete remissions (18%), four complete remissions with incomplete recovery of blood counts (10%), and two partial remissions (5%). ORR was 25% (7/28), and 50% (6/12), for AML and ALL respectively. Notably, the clinical responses were independent of dose level. 7/17 patients (41%) exhibited CLO ‐mediated enhancement of CY ‐induced DNA , which was associated with, but not necessary for, improved clinical outcomes. In summary, the CLO ‐ CY x4 regimen was well tolerated and had activity in patients with RRAL , especially relapsed ALL . Therefore, CLO ‐ CY x4 can be considered a salvage therapy for adults with RRAL s, and warrants further investigations.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 4 ( 2017-02-15), p. 899-907
    Abstract: Purpose: The PARP inhibitor veliparib delays DNA repair and potentiates cytotoxicity of multiple classes of chemotherapy drugs, including topoisomerase I inhibitors and platinating agents. This study evaluated veliparib incorporation into leukemia induction therapy using a previously described topotecan/carboplatin backbone. Experimental Design: Employing a 3+3 trial design, we administered escalating doses of veliparib combined with topotecan + carboplatin in relapsed or refractory acute leukemias, aggressive myeloproliferative neoplasms (MPN), and chronic myelomonocytic leukemia (CMML). Results: A total of 99 patients received veliparib 10–100 mg orally twice daily on days 1–8, 1–14, or 1–21 along with continuous infusion topotecan 1.0–1.2 mg/m2/d + carboplatin 120–150 mg/m2/d on days 3–7. The MTD was veliparib 80 mg twice daily for up to 21 days with topotecan 1.2 mg/m2/d + carboplatin 150 mg/m2/d. Mucositis was dose limiting and correlated with high veliparib concentrations. The response rate was 33% overall (33/99: 14 CR, 11 CRi, 8 PR) but was 64% (14/22) for patients with antecedent or associated aggressive MPNs or CMML. Leukemias with baseline DNA repair defects, as evidenced by impaired DNA damage–induced FANCD2 monoubiquitination, had improved survival [HR = 0.56 (95% confidence interval, 0.27–0.92)]. A single 80-mg dose of veliparib, as well as veliparib in combination with topotecan + carboplatin, induced DNA damage as manifested by histone H2AX phosphorylation in CD34+ leukemia cells, with greater phosphorylation in cells from responders. Conclusions: The veliparib/topotecan/carboplatin combination warrants further investigation, particularly in patients with aggressive MPNs, CMML, and MPN- or CMML-related acute leukemias. Clin Cancer Res; 23(4); 899–907. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2682-2682
    Abstract: Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) is an aggressive hematologic malignancy derived from plasmacytoid dendritic cells. The clinical presentation of BPDCN typically involves the skin at outset and invariably progresses to a leukemic phase with or without lymph node and splenic involvement. BPDCN blasts have a distinctive phenotypic appearance with ubiquitous overexpression of CD4, CD56, and CD123 (interleukin-3 receptor [IL-3R]). Although rare, BPDCN has been estimated to affect at least two thousand patients in the United States and Europe annually. There is no standard therapy for BPDCN, but treatment usually incorporates intensive combination chemotherapy, occasionally with allogeneic stem cell transplant. Treatment-naïve patients generally respond to these measures, but disease-free survival is brief, and most patients relapse with chemo-resistant disease. Despite aggressive upfront therapies, BPDCN has a dismal prognosis with estimated median survival of 9-14 months. SL-401, a novel biologic targeted therapy directed to IL-3R, is being developed to treat BPDCN, acute myeloid leukemia (AML), and several other IL-3R-expressing hematologic malignancies. SL-401, which is comprised of IL-3 conjugated to a truncated diphtheria toxin, a potent inhibitor of protein synthesis, has demonstrated ultra-high anti-tumor potency against BPDCN cell lines and primary BPDCN tumor cells, with IC50 values in the femtomolar (10-15 M) range and robust activity after treatment of an in vivo model of human primary BPDCN cell engraftment (Angelot-Delettre et al; ASH 2013). This report serves to update the results of SL-401 treatment in BPDCN patients who are participating in a Phase 1/2 study of SL-401 administered as a single cycle (15 minute infusion daily for 5 days). To date, 6 subjects with BPDCN (5 male/1 female; ages 35-72 years) received a single cycle of SL-401. The BPDCN blasts of all 6 patients expressed CD123 (IL-3R) as well as CD4 and CD56. Five patients had failed previous chemotherapy regimens, with 3 of these subjects also having received allogeneic stem cell transplantation, whereas one patient was treatment naïve. There have been no serious adverse events. Two patients had SL-401-related Grade 3 liver function test (LFT) elevations that recovered to Grade ≤2 within 24 hours and one patient had a brief episode of SL-401-related Grade 3 neutropenia and thrombocytopenia; all other SL-401-related adverse events (AEs) were Grade ≤2. One patient was not evaluable for response. To date, 5 (100%) of the 5 evaluable patients have had major responses. All five responding patients were treated with SL-401 at 12.5 µg/kg/day for 5 days, and experienced either a complete response (CR; 4 patients) or a partial response (1 patient). The CRs included disappearance of BPDCN in the skin, bone marrow, peripheral blood, spleen, and lymph nodes. As of August 2013, CR durations following a single cycle of SL-401 treatment are 11+ (ongoing), 5, 3, and 1 months; the PR duration is 1 month. Given these promising clinical responses to this targeted therapy, additional BPDCN patients are being accrued to this study and a pivotal program will begin in 2014. Disclosures: Frankel: Stemline Therapeutics: Research Funding. Woo:Angimmune: Patents & Royalties, Research Funding. Brooks:Stemline Therapeutics: Employment, Equity Ownership. Szarek:Stemline Therapeutics: Employment, Equity Ownership. Bergstein:Stemline Therapeutics: Employment, Equity Ownership, Patents & Royalties. Rowinsky:Stemline Therapeutics: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1361-1361
    Abstract: Among mechanisms underlying cytotoxic drug resistance is activation of diverse DNA damage response (DDR) pathways. Poly(ADP-ribose) polymerases (PARP)-1/2 facilitate both single- and double-strand break (DSB) repair and play a key role in the base excision repair (BER) of chemotherapy-damaged DNA. The PARP inhibitor veliparib (V) potentiates the cytotoxicity of different chemotherapeutics, including temozolomide (TEM). TEM induces distinct alkylating events in neoplastic cells whose ultimate outcome depends on the interaction of BER, mismatch repair (MMR), O(6)-methylguanine-DNA methyltransferase (MGMT), and DSB repair. While clinical activity of TEM has been mainly observed in MGMT-deficient AML, V potentiated cytotoxicity of TEM in leukemia cells in vitro in the setting of MGMT overexpression or deficient MMR pathway (Mol Cancer Ther, 2009). Methods: We conducted a Phase I study to determine maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) of V+TEM, using a 3+3 dose escalation. Patients (pts) ≥60 years (yrs) with newly diagnosed poor cytogenetic-risk AML/ALL who were not candidates for intensive therapy, or ≥18 yrs with relapsed/refractory AML/ALL, secondary AML (therapy-related or arising from MDS or MPN), and CMMoL-2 were eligible. Any number of prior regimens, including allogeneic transplant (alloSCT), were allowed. V was given orally day (d)1 once, then twice a day on d4-12 at one of 6 dose levels (DL) (DL1A-B 20mg; DL2-DL3-DL4-DL5-DL6: 40-80-120-150-200 mg). TEM was given orally once a day on d3-9 (DL1A 150 mg/m2/d; DL1B-DL6 200 mg/m2/d). 28-day cycles (cy) were repeated depending on response/tolerability (4-6 weeks delay allowed) with V on d1-8 and TEM d1-5. TEM was taken on empty stomach with antiemetics and V was taken irrespective of meals. Results: Forty-nine pts with median age 69 yrs (range, 22-88; 47% ≥70) were treated. Of 47 AML pts, 29 (62%) had secondary AML and 27 (57%) adverse karyotype. Median number of prior treatments for AML was 1 (range, 0-6): 18 (38%) had median 1 prior therapy (range, 1-3) for MDS; 30 (64%), 9 (18%), 34 (69%) received hypomethylating agents, alloSCT and intensive chemotherapy, respectively. Overall 42 (85%) pts were refractory to their last treatment. Pts received a median of 1 (range, 1-7) cy of therapy. Two did not complete cy 1, pt withdrawal d5 and progressive fungal pneumonia d9 with death d15 of progressive disease (PD). The MTD/RP2D was defined at V 150 mg and TEM 200 mg/m2; 2 of 4 pts treated at V 200 mg and TEM 200 mg/m2 developed dose-limiting toxicity of grade (gr) 3 oral mucositis/esophagitis. The most frequent drug-related toxicities (NCI CTC v4) were gr 1/2 nausea/vomiting (39%), fatigue (26%), oropharyngeal mucositis (26%), constipation (12%), and diarrhea (10%). Other common toxicities were infectious, including febrile neutropenia (29%), pneumonia (20%), bacteremia (18%). One (2%) pt died ≤d30 and 12 (24%) ≤d60 mainly of PD (1 pt fungal pneumonia before count recovery d31). Overall response rate was 33% (complete remission (CR), hematologic improvement (HI)/stable disease) with 8 (16%) pts achieving CR (1 CRi). Median overall survival was 5.03 months, for all responders 11.58 months, and for CR pts 19.89 months (Fig 1). Responses occurred at all DLs. Three CR pts underwent alloSCT; 2 remain in CR at ~3 yrs. Pharmacokinetics (PK): V or TEM PKs were not altered with co-administration. There was a correlation between the DLT of mucositis and V single (Cmax P=0.005; AUC P=0.009) and multiple dose exposure (Cmax P = 0.02; AUC P=0.03). Pharmacodynamics and pharmacoepigenetics: Four of 39 pts examined had MGMT methylation (3 CR; 75%) and 2 had BRCA-1 methylation (1 HI) in peripheral blood (PB) or bone marrow (BM) mononuclear cells (MC). Defective FancD2 pathway was observed in the BMMC of 19/19 pts using FancD2 ubiquitylation assays but did not correlate with response. V reduced PAR levels by 〉 75% in PBMC of most pts and in the presence of TEM. Induction of γ-H2AX in CD34+ cells was seen upon V/V+TEM treatment. Conclusion: V plus TEM demonstrated safety and activity in this resistant and elderly leukemia population. Response rate was higher in MGMT methylated pts, but responses were also seen in pts who had no MGMT methylation, had failed multiple therapies, had secondary AML and/or adverse karyotype. Future clinical study should aim to identify pts with defective DDR pathways who are most likely to respond to this therapeutic approach. Figure 1. Figure 1. Disclosures Off Label Use: Temozolomide is not approved for AML. Beumer:Millenium: Other: Research support. Gore:Celgene: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 18, No. 24 ( 2012-12-15), p. 6723-6731
    Abstract: Purpose: Incorporation of cytarabine into DNA activates checkpoint kinase 1 (Chk1), which stabilizes stalled replication forks, induces S-phase slowing, and diminishes cytarabine cytotoxicity. The selective Chk1 inhibitor SCH 900776 abrogates cytarabine-induced S-phase arrest and enhances cytarabine cytotoxicity in acute leukemia cell lines and leukemic blasts in vitro. To extend these findings to the clinical setting, we have conducted a phase I study of cytarabine and SCH 900776. Experimental Design: Twenty-four adults with relapsed and refractory acute leukemias received timed sequential, continuous infusion cytarabine 2 g/m2 over 72 hours (667 mg/m2/24 hours) beginning on day 1 and again on day 10. SCH 900776 was administered as a 15- to 30-minute infusion on days 2, 3, 11, and 12. The starting dose of SCH 900776 was 10 mg/m2/dose. Results: Dose-limiting toxicities consisting of corrected QT interval prolongation and grade 3 palmar-plantar erythrodysesthesia occurred at 140 mg flat dosing (dose level 5, equivalent to 80 mg/m2). Complete remissions occurred in 8 of 24 (33%) patients, with 7 of 8 at 40 mg/m2 or higher. SCH 900776 did not accumulate at any dose level. Marrow blasts obtained pretreatment and during therapy showed increased phosphorylation of H2Ax after SCH 900776 beginning at 40 mg/m2, consistent with unrepaired DNA damage. Conclusions: These data support a randomized phase II trial of cytarabine +/− SCH 900776 at a recommended flat dose of 100 mg (equivalent to 56 mg/m2) for adults with poor-risk leukemias. The trial (SP P05247) was registered at www.clinicaltrials.gov as NCT00907517. Clin Cancer Res; 18(24); 6723–31. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3665-3665
    Abstract: The high frequency of TET2 mutations in myelodysplastic syndromes (MDS) and the sole function of TET-dioxygenases as 5-hydroxymethylcytosine (5-hmC) hydroxylases emphasize the key role of this gene in disease pathogenesis. However, the broad down-regulation of 5-hmC argues for a role of DNA demethylation in MDS beyond TET2 lesions, which albeit the high frequency, do not convey any impact on survival outcomes. In fact, decrease in 5-hmC levels is by far more widely spread than TET2 lesions pointing towards other pathways affecting TET2 activity, thereby obscuring a precise determination of its mutational and clinical consequences. Herein, we investigated TETs expression to identify factors explaining the widespread deficiency of 5-hmC in MDS possibly determining clinical phenotypes and prognosis. An integrative data analysis of genomic studies (whole genome and deep targeted NGS), RNA-sequencing and 5-hmC quantification was performed on 1,665 patients with MDS and 91 healthy controls (HC). Meta-analytic studies of 5-hmC levels in myeloid neoplasia (n=598) and data of RNA-sequencing of fractionated CD34 (GSE63569) were also included as confirmatory cohorts. We started by analyzing the clinical impact of TET2 mutations carried by 23% of our study population. No impact on survival was found in carriers of TET2 lesions including those with biallelic, truncating or missense mutations compared to wild-type (WT) (Fig1A). By using 5-hmC levels as a functional readout of TET activity, we found a TET deficiency in about 70% of patients, a proportion higher than one would conclude by considering the mere presence of TET2 mutations (Fig1B). To explain the decrease in 5-hmC levels in WT cases, we next examined transcriptome modifications. Analysis of the expression of TET family of genes showed that MDS patients had lower TET2 mRNA levels in total and in CD34+ cells as compared to HC, irrespective of their TET2 status. Therefore, we reasoned that TET2 deficiency is more ubiquitously involved in MDS pathogenesis than what would be expected by the only estimation of mutant cases. Indeed, "low expressor" status (defined by TET2 expression & lt; 25%ile of HC) was found in 74% of MDS. Along with variable 5-hmC levels, concomitant differences in TET1/TET3 expression were also investigated. While TET1 levels were too low to be evaluated, TET3 expression levels were markedly higher in all and in WT MDS compared to HC, possibly in an attempt to compensate TET2 dysfunction (Fig1C). In addition, TET3 expression did not correlate with TET2 mutational burden, confuting a compensatory feedback mechanism in TET2 mutant cases. Further uni- and multivariate analyses showed that elevated TET3 levels compensated TET2 deficiency in terms of clinical outcomes (Fig1D) and linear regression analyses confirmed that indeed lack of compensation by TET3 (low TET3 expression) was associated with high risk features. To explore whether other factors might be associated with low TET2 levels, we studied TET2 expression in WT cases as to the presence of other mutations. We found that TET2 expression was significantly lower in patients harboring DNMT3A (P & lt; 0.0001), SF3B1 (P & lt; 0.0001) and SRSF2 (P= 0.04) compared to HC. However, lack of correlation between levels of TET2 and mutational burden failed to prove a direct relationship of these mutations (Fig1E). Decreased hydroxylation of 5-mC may also be caused by endogenous L-2-hydroxyglutarate (L2HG) produced via malate shunt. Accordingly, L2HG dehydrogenase (L2HGDH) levels catabolizing L2HG and malate dehydrogenases (MDH1/2) supplying L2HG, would influence TET2 activity in a reciprocal fashion. Consistently we found that MDH1/2 levels were increased in MDS and that L2HGDH showed also a likely compensatory increase to handle elevated L2HG loads. Further, linear regression analyses revealed that L2HGDH levels were correlated inversely with TET2 and positively with TET3 expression in WT cases (Fig1F). In sum, MDS can be considered a wide-ranging 5-hmC deficiency disorder driven by direct or indirect loss of TET2functions by mutations or down-modulation due to a variety of mechanisms. Disease phenotypes and outcomes are both influenced by counteracting factors such as expression of TET3. Application of precision therapeutic approaches should be informed by the analyses of all these factors. Figure 1 Figure 1. Disclosures Carraway: Astex: Other: Independent review committee; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Stemline: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Agios: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AbbVie: Other: Independent review committee; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Other: Independent review committee; Celgene, a Bristol Myers Squibb company: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kim: Paladin: Consultancy, Honoraria, Research Funding; Bristol-Meier Squibb: Research Funding; Pfizer: Honoraria; Novartis: Consultancy, Honoraria, Research Funding. Minden: Astellas: Consultancy. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Maciejewski: Bristol Myers Squibb/Celgene: Consultancy; Novartis: Consultancy; Regeneron: Consultancy; Alexion: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 86-86
    Abstract: Background Acute myeloid leukemia (AML) is a complex, heterogeneous neoplasm characterized by the accumulation of complex genetic alterations that are responsible for the initiation and progression of the disease. Secondary AML (sAML) represents a progression from antecedent hematologic disorders such as myelodysplastic syndromes (MDS) or myeloprolifrative neoplasms (MPN). Certain acquired mutations have been reported to be specific for sAML when compared to primary AML (pAML), but many limitations exist when cytogenetic grouping or other parameters are taken into account. In addition, some mutations have been shown to impact survival in some studies, but not others. Methods We performed targeted deep sequencing on samples from bone marrow and peripheral blood of pts diagnosed with sAML and pAML and treated at our institution between 1/2003-1/2013. Additional data on pAML was added from The Cancer Genome Atlas (TCGA). A panel of 62 gene mutations described as frequently recurrent mutations in myeloid malignancies were assessed. Cytogenetic grouping was defined by CALGB/Alliance criteria. Differences were compared using Fisher's exact test and the Mann-Whitney U test for categorical and continuous variables, respectively. Overall survival (OS) was calculated from the time of diagnosis to last follow up or death. Results: A total of 496 pts included: 273 with pAML and 223 with sAML. Comparing pAML to sAML, pts were younger (median age 59 vs. 68 years, p 〈 .001) and had a higher WBC at diagnosis (13.5 vs. 3.9 X 109/L, p 〈 .001), respectively. Cytogenetic analysis showed significant differences: 58% of pAML pts had normal karyotype (NK) compared to 37% of sAML (p=.002), whereas 24% and 26% of sAML had intermediate risk (other than NK) and complex karyotype ( 〉 3 abnormalities) compared to 11% and 16% for pAML (p 〈 .001, .009), respectively. Mutations in ASXL1 (p 〈 .001), JAK2 (p=.014), CBL (p=.05), BCOR (p=.02), STAG2 (p =.003), SF3B1 (p=.04), SRSF2 (p=.001 ), and U2AF1 (p=.03) were highly specific for the sAML phenotype, whereas mutations in NPM1 (p 〈 .001 ), FLT3 (p 〈 .001), DNMT3A (p 〈 .001), and IDH2 (p=.02) were more specific for pAML. When the analysis was restricted to pts with NK cytogenetics, only ASXL1 (p 〈 .001) remained specific for sAML and DNMT3A (p 〈 .001) for pAML.Further, when the analysis was restricted to pts with unfavorable risk cytogenetics, only ASXL1 (p=.01) remained specific for sAML. No other mutations were specific for pAML. We then evaluated whether the mutations that were specific to each AML phenotype had an impact on OS. We observed different mutations that impacted OS in each phenotype: DNMT3A (HR 1.81, 95% CI 1.28-2.57, p 〈 .001), TP53 (HR 3.1, 95% 1.74-5.53, p 〈 .001), and SUZ12 (HR 3.18, 95% CI 1.01-10, p=.05) led to worse OS in pAML, whereas mutations in EZH2 (HR 2.12, 95% CI 1.07-4.21, p =.03), PRPF8 (HR 2.32, 95% CI 1.20-4.46, p=.01), and TP53 ( HR 2.92, 95% CI 1.69-5.04, p 〈 .001) lead to worse OS in sAML. Different mutations had a different impact on OS when cytogenetic analysis was taken into account. Mutations in FLT3 (HR 2.15, 95% CI 1.37- 3.35, p 〈 .001) and DNMT3A (HR 2.41, 95% CI 1.57-3.70, p 〈 .001) led to worse OS in NK pAML, whereas none of the mutations impacted OS in NK sAML. Further, in pAML with unfavorable cytogenetics, BCOR (HR 2.41, 95% CI 1.57-3.70, p 〈 .001) and TP53 (HR 2.41, 95% CI 1.57-3.70, p 〈 .001) had led to worse OS, whereas BOCR (HR 2.95, 95% CI 1.03-8.50, p 〈 .001), SF3B1 (HR .19, 95% CI .05-.82, p 〈 .001), SUZ12 (HR .12, 95% CI .01-.99, p 〈 .001),and TP53 (HR 1.9, 95% CI 1.09-3.46, p 〈 .001) only impacted OS in sAML. Conclusion Clear genomic variations exist between sAML and pAML. Although some of these genomic changes are more specific to each phenotype in general, this specificity and the impact on OS differed for each cytogenetic subgroup, highlighting the complexity of interpreting genomic information in pts with AML and the need to incorporate both cytogenetic and molecular data in prognosis-driven treatment decisions. Disclosures Sekeres: TetraLogic: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...