GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Comparative Studies. Non-European Languages/Literatures  (2)
Material
Language
Years
FID
Subjects(RVK)
  • Comparative Studies. Non-European Languages/Literatures  (2)
RVK
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2012
    In:  The Journal of the Acoustical Society of America Vol. 131, No. 4_Supplement ( 2012-04-01), p. 3427-3427
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 131, No. 4_Supplement ( 2012-04-01), p. 3427-3427
    Abstract: Cavitation is the Achilles' heel of kinetic pumps and propellers. It can lead to performance degradation, structure vibration and noise, and bring about material erosion. Therefore some methods should be taken to detect cavitation. In this work, passive and active acoustics methods of online cavitation detection are set up to recognize cavitation and non-cavitation state. The former uses a hydrophone to receive emitted hydroacoustics signal. The signals from 10 kHz to 60 kHz are analyzed to extract features for pattern classification. The latter applies ultrasound to acquire flow field message. The ultrasound received is demodulated and the modulating signal is also analyzed for pattern classification. Experiments based on the two methods are carried out. Classification accuracy, computational complexity and installation difficulty are compared. Their applicability is also summarized.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2012
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2022
    In:  The Journal of the Acoustical Society of America Vol. 151, No. 5 ( 2022-05-01), p. 2877-2884
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 151, No. 5 ( 2022-05-01), p. 2877-2884
    Abstract: The sparse property of a direct adaptive equalizer (DAE) for single-carrier underwater acoustic communications is well recognized. It has been used to improve the performance and/or reduce the complexity of a DAE. Extensive investigations have been performed in terms of performance improvement. On the contrary, research on complexity reduction remains preliminary. A fundamental way for reducing the complexity of a DAE is to keep only significant taps while discarding trivial taps, that is, to run a partial-tap DAE. Existing partial-tap DAE designs assume a slowly varying sparse structure and may suffer performance degradation under a severe underwater environment. Motivated by this fact, the dynamic compressed sensing (DCS) technique is resorted to and a partial-tap DAE based on the sparse adaptive orthogonal matching pursuit-affine projection algorithm is proposed. The sparse adaptive orthogonal matching pursuit-affine projection algorithm-direct adaptive equalizer (SpAdOMP-APA-DAE) achieves symbol-wise updating of both positions and values of the significant coefficients. In this paper, a more extensive study on DCS-based DAEs is performed, and an enhanced dynamic compressed sensing-direct adaptive equalizer design enabled by the sparse adaptive subspace pursuit-improved proportionate affine projection algorithm (SpAdOMP-IPAPA) is proposed. The sparse adaptive subspace pursuit-improved proportionate affine projection algorithm-direct adaptive equalizer enjoys lower complexity while better performance than the previous SpAdOMP-APA-DAE. Experimental results corroborated the superiority of the SpAdOMP-IPAPA-DAE.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2022
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...