GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Comparative Studies. Non-European Languages/Literatures  (42)
Material
Language
Years
FID
Subjects(RVK)
  • Comparative Studies. Non-European Languages/Literatures  (42)
RVK
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2017
    In:  The Journal of the Acoustical Society of America Vol. 142, No. 4 ( 2017-10-01), p. 1901-1912
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 142, No. 4 ( 2017-10-01), p. 1901-1912
    Abstract: Acoustic properties of odontocete head tissues, including sound velocity, density, and acoustic impedance, are important parameters to understand dynamics of its echolocation. In this paper, acoustic properties of head tissues from a freshly dead short-finned pilot whale (Globicephala macrorhynchus) were reconstructed using computed tomography (CT) and ultrasound. The animal's forehead soft tissues were cut into 188 ordered samples. Sound velocity, density, and acoustic impedance of each sample were either directly measured or calculated by formula, and Hounsfield Unit values (HUs) were obtained from CT scanning. According to relationships between HUs and sound velocity, HUs and density, as well as HUs and acoustic impedance, distributions of acoustic properties in the head were reconstructed. The inner core in the melon with low-sound velocity and low-density is an evidence for its potential function of sound focusing. The increase in acoustic impedance of forehead tissues from inner core to outer layer may be important for the acoustic impedance matching between the outer layer tissue and seawater. In addition, temperature dependence of sound velocity in soft tissues was also examined. The results provide a guide to the simulation of the sound emission of the short-finned pilot whale.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2017
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2005
    In:  The Journal of the Acoustical Society of America Vol. 117, No. 5 ( 2005-05-01), p. 3288-3296
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 117, No. 5 ( 2005-05-01), p. 3288-3296
    Abstract: This paper describes the high-frequency echolocation signals from free-ranging Yangtze finless porpoise in the Tian-e-zhou Baiji National Natural Reserve in Hubei Province, China. Signal analysis showed that the Yangtze finless porpoise clicks are typical high-frequency narrow-band (relative width of the frequency spectrum Q=6.6±1.56, N=548) ultrasonic pulses. The peak frequencies of the typical clicks range from 87 to 145 kHz with an average of 125±6.92 kHz. The durations range from 30 to 122 μs with an average of 68±14.12 μs. The characteristics of the signals are similar to those of other members of the Phocoenidae as well as the distantly related delphinids, Cephalorhynchus spp. Comparison of these signals to those of the baiji (Lipotes vexillifer), who occupies habitat similar to that of the Yangtze finless porpoise, showed that the peak frequencies of clicks produced by the Yangtze finless porpoise are remarkably higher than those produced by the baiji. Difference in peak frequency between the two species is probably linked to the different size of preferred prey fish. Clear double-pulse and multi-pulse reverberation structures of clicks are noticed, and there is no indication of any low-frequency ( & lt;70 kHz) components during the recording period.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2005
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2017
    In:  The Journal of the Acoustical Society of America Vol. 142, No. 5 ( 2017-11-01), p. 2766-2775
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 142, No. 5 ( 2017-11-01), p. 2766-2775
    Abstract: Ship noise pollution has raised considerable concerns among regulatory agencies and cetacean researchers worldwide. There is an urgent need to quantify ship noise in coastal areas and assess its potential biological impacts. In this study, underwater broadband noise from commercial ships in a critical habitat of Indo-Pacific humpback dolphins was recorded and analyzed. Data analysis indicated that the ship noise caused by the investigated commercial ships with an average length of 134 ± 81 m, traveling at 18.8 ± 2.5 km/h [mean ± standard deviation (SD), n = 21] comprises mid-to-high components with frequencies approaching and exceeding 100 kHz, and the ship noise could be sensed auditorily by Indo-Pacific humpback dolphins within most of their sensitive frequency range. The contributions of ship noise to ambient noise were highest in two third-octave bands with center frequencies of 8 and 50 kHz, which are within the sensitive hearing range of Indo-Pacific humpback dolphins and overlap the frequency of sounds that are biologically significant to the dolphins. It is estimated that ship noise in these third-octave bands can be auditorily sensed by and potentially affect the dolphins within 2290 ± 1172 m and 848 ± 358 m (mean ± SD, n = 21), respectively.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2017
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2017
    In:  The Journal of the Acoustical Society of America Vol. 142, No. 2 ( 2017-08-01), p. 771-779
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 142, No. 2 ( 2017-08-01), p. 771-779
    Abstract: While the transmission beam of odontocetes has been described in a number of studies, the majority of them that have measured the transmission beam in two dimensions were focused on captive animals. Within the current study, a dedicated cross hydrophone array with nine elements was used to investigate the echolocation transmission beam of free-ranging Indo-Pacific humpback dolphins. A total of 265 on-axis clicks were analyzed, from which the apparent peak to peak source levels ranged between 168 to 207 dB (mean 184.5 dB ± 6.6 dB). The 3-dB beam width along the horizontal and vertical plane was 9.6° and 7.4°, respectively. Measured separately, the directivity index of the horizontal and vertical plane was 12.6 and 13.5 dB, respectively, and the overall directivity index (both planes combined) was 29.5 dB. The beam shape was slightly asymmetrical along the horizontal and vertical axis. Compared to other species, the characteristics of the transmitting beam of Indo-Pacific humpback dolphins were relatively close to the bottlenose dolphin (Tursiops truncatus), likely due to the similarity in the peak frequency and waveform of echolocation clicks and comparable body sizes of the two species.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2017
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2009
    In:  The Journal of the Acoustical Society of America Vol. 126, No. 1 ( 2009-07-01), p. 468-475
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 126, No. 1 ( 2009-07-01), p. 468-475
    Abstract: Cetaceans produce sound signals frequently. Usually, acoustic localization of cetaceans was made by cable hydrophone arrays and multichannel recording systems. In this study, a simple and relatively inexpensive towed acoustic system consisting of two miniature stereo acoustic data-loggers is described for localization and tracking of finless porpoises in a mobile survey. Among 204 porpoises detected acoustically, 34 individuals (∼17%) were localized, and 4 of the 34 localized individuals were tracked. The accuracy of the localization is considered to be fairly high, as the upper bounds of relative distance errors were less than 41% within 173 m. With the location information, source levels of finless porpoise clicks were estimated to range from 180 to 209 dB re 1 μPa pp at 1 m with an average of 197 dB (N=34), which is over 20 dB higher than that estimated previously from animals in enclosed waters. For the four tracked porpoises, two-dimensional swimming trajectories relative to the moving survey boat, absolute swimming speed, and absolute heading direction are deduced by assuming the animal movements are straight and at constant speed in the segment between two consecutive locations.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2009
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2013
    In:  The Journal of the Acoustical Society of America Vol. 133, No. 5 ( 2013-05-01), p. 3128-3134
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 133, No. 5 ( 2013-05-01), p. 3128-3134
    Abstract: The biosonar (click train) production rate of ten Yangtze finless porpoises and their behavior were examined using animal-borne data loggers. The sound production rate varied from 0 to 290 click trains per 10-min time interval. Large individual differences were observed, regardless of body size. Taken together, however, sound production did not differ significantly between daytime and nighttime. Over the 172.5 h of analyzed recordings, an average of 99.0% of the click trains were produced within intervals of less than 60 s, indicating that during a 1-min interval, the number of click trains produced by each porpoise was typically greater than one. Most of the porpoises exhibited differences in average swimming speed and depth between day and night. Swimming speed reductions and usage of short-range sonar, which relates to prey-capture attempts, were observed more often during nighttime. However, biosonar appears to be affected not only by porpoise foraging, but also by their sensory environment, i.e., the turbid Yangtze River system. These features will be useful for passive acoustic detection of the porpoises. Calculations of porpoise density or abundance should be conducted carefully because large individual differences in the sound production rate will lead to large estimation error.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2013
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2010
    In:  The Journal of the Acoustical Society of America Vol. 128, No. 3 ( 2010-09-01), p. 1476-1482
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 128, No. 3 ( 2010-09-01), p. 1476-1482
    Abstract: Data on distribution, abundance, ecology, and behavior are essential for conservation and management of endangered animals in the wild. Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is an endangered small odontocete species, living exclusively in the Yangtze River and its connecting Poyang and Dongting Lakes. Frequent production of high-frequency bio-sonar signals allows the animal to be detectable using passive acoustic methods. Recently, a stereo acoustic event data-logger (A-tag) has been used extensively to detect the animal by using both fixed and mobile platforms. The passive acoustic monitoring methods were not only successful in detecting the presence of animals, but also in counting, localizing, and tracking phonating individuals. Underwater behavior observed acoustically helped to assess possible effects of vessels on the animals during acoustic surveys.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2010
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2015
    In:  The Journal of the Acoustical Society of America Vol. 138, No. 3 ( 2015-09-01), p. 1346-1352
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 138, No. 3 ( 2015-09-01), p. 1346-1352
    Abstract: While the low-frequency communication sounds of Indo-Pacific humpback dolphins (Sousa chinensis) have been reported in a number of papers, the high-frequency echolocation signals of Sousa chinensis, especially those living in the wild, have been less studied. In the current study, echolocation signals of humpback dolphins were recorded in Sanniang Bay, Guangxi Province, China, using a cross-type hydrophone array with five elements. In total, 77 candidate on-axis clicks from 77 scans were selected for analysis. The results showed that the varied peak-to-peak source levels ranged from 177.1 to 207.3 dB, with an average of 187.7 dB re: 1 μPa. The mean peak frequency was 109.0 kHz with a −3-dB bandwidth of 50.3 kHz and 95% energy duration of 22 μs. The −3-dB bandwidth was much broader than the root mean square bandwidth and exhibited a bimodal distribution. The center frequency exhibited a positive relationship with the peak-to-peak source level. The clicks of the wild Indo-Pacific humpback dolphins were short-duration, broadband, ultrasonic pulses, similar to those produced by other whistling dolphins of similar body size. However, the click source levels of the Indo-Pacific humpback dolphin appear to be lower than those of other whistling dolphins.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2015
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2013
    In:  The Journal of the Acoustical Society of America Vol. 134, No. 5_Supplement ( 2013-11-01), p. 4006-4006
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 134, No. 5_Supplement ( 2013-11-01), p. 4006-4006
    Abstract: Observing and monitoring underwater social interactions of cetaceans is challenging. Because cetaceans spend most of their time underwater, it is important to monitor their underwater behavior individually. The finless porpoise is small and has no available natural identification marks that causes little knowledge of its sociality. Here we used acoustic datalogger to synchronize individual depth profile among individuals within a second. Acoustic and behavior tags were deployed on six free-ranging finless porpoises simultaneously and released in open water. Echolocation sounds were used as the trigger signal to synchronize the clock of all logging systems. Synchronous dives characterized by similar time-depth profile were used as an index of association. Two pairs tended to participate in long periods of synchronized diving more frequently than 13 other possible pairs, indicating that these four porpoises chose their social partners. Initiator and follower could be identified by precisely time synchronized data. The adult males tended to follow the immature female and juvenile male, respectively. However, the role of an initiator often changed within the pair during synchronized diving, and their body movements appeared to be non-agonistic.The time-synchronized bio-logging method was useful for observation of the social relationships of free-ranging aquatic animals.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2013
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2017
    In:  The Journal of the Acoustical Society of America Vol. 142, No. 5 ( 2017-11-01), p. 3198-3204
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 142, No. 5 ( 2017-11-01), p. 3198-3204
    Abstract: In 2014, Indo-Pacific humpback dolphins were recorded for the first time in waters southwest of Hainan Island, China. In this paper, the temporal occurrence of Indo-Pacific humpback dolphins in this region was detected by stationary passive acoustic monitoring. During the 130-day observation period (from January to July 2016), 1969 click trains produced by Indo-Pacific humpback dolphins were identified, and 262 ten-minute recording bins contained echolocation click trains of dolphins, of which 70.9% were at night and 29.1% were during the day. A diurnal rhythm with a nighttime peak in acoustic detections was found. Passive acoustic detections indicated that the Indo-Pacific humpback dolphins frequently occurred in this area and were detected mainly at night. This information may be relevant to conservation efforts for these dolphins in the near future.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2017
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...