GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Basin Research Vol. 32, No. 2 ( 2020-04), p. 187-205
    In: Basin Research, Wiley, Vol. 32, No. 2 ( 2020-04), p. 187-205
    Abstract: This special issue dealing with the recent advances on modern and ancient clinoform‐stratified sedimentary successions arises from a European Geoscience Union (EGU) session “Clinoform drivers and stratigraphic products in siliciclastic and carbonate successions”, Vienna, April 2018. Clinoforms and clinothems represent a dominant architectural style of strata in many sedimentary environments, including deltaic and nondeltaic shorelines in both marine and lacustrine settings, and are one of the key building blocks of the sedimentary record. This Special Issue in Basin Research aspires to represent a step forward in understanding formation and preservation of these fundamental stratigraphic elements. As this Special Issue documents, a comprehensive understanding of clinoformal strata requires a multidisciplinary and multi‐scale approach. Sixteen papers present case studies from a variety of tectonic settings worldwide, investigated with an array of methods, including seismo‐stratigraphy, well logs, cores, high‐resolution biostratigraphy, outcrop studies and modern bathymetric data. While observations document sedimentary processes and products in sedimentary basins, numerical models are necessary to provide a quantitative basis for the extrapolation of these processes and strata at different temporal and spatial scales. The papers highlight at least five main research avenues that we briefly introduce and discuss below: (a) clinoforms and clinothems as sedimentary archives; (b) the nested nature of clinoformal strata and implications for the trajectory of the rollover point(s); (c) quantitative clinoform parameters and dynamic indices; (d) architecture, growth and sequence stratigraphy of marine versus lacustrine clinoformal strata; and (e) clinoforms and geological time. This introduction also contains brief descriptions of each paper of the Special Issue.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Basin Research, Wiley, Vol. 32, No. 2 ( 2020-04), p. 363-377
    Abstract: Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea‐level variation and as predictors of the character of deposits beyond the shelf‐break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high‐resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf‐break. It comprised a wave‐dominated delta to the west and a barrier and back‐barrier depositional system in the central and eastern area. Storm‐enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm‐enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf‐break trajectory. However, the main phase of shelf‐break bypass and basin deposition coincides with a younger steeply rising shelf‐break trajectory. We interpret divergence from standard models, linking shelf‐break trajectory to deep‐sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea‐level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf‐edge. In general, our study suggests that where the shoreline does not coincide with the shelf‐break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Basin Research, Wiley, Vol. 32, No. 2 ( 2020-04), p. 402-418
    Abstract: Reconstructions of ancient delta systems rely typically on a two‐dimensional (2D) view of prograding clinothems but may miss their three‐dimensional (3D) stratigraphic complexity which can, instead, be best documented on modern delta systems by integrating high‐resolution geophysical data, historical cartography, core data and geomorphological reconstructions offshore. We quantitatively compare three precisely positioned, high‐resolution multi‐beam bathymetry maps in the delta front and pro delta sectors (0.3 to 10 m water depth) of Po di Pila , the most active of the modern Po Delta five branches. By investigating the detailed morphology of the prograding modern Po Delta, we shed new light on the mechanisms that control the topset to foreset transition in clinothems and show the temporal and spatial complexity of a delta and its pro delta slope, under the impact of oceanographic processes. This study documents the ephemeral nature of the rollover point at the transition between sandy topset (fluvial, delta plain to mouth‐bar) and muddy seaward‐dipping foreset deposits advancing, in this case, in 〉 20 m of water depth. Three multibeam surveys, acquired between 2013 and 2016, document the complexity in space and time of the topset and foreset regions and their related morphology, a diagnostic feature that could not be appreciated using solely 2D, even very high‐resolution, seismic profiles. In addition, the comparison of bathymetric surveys gathered with one‐year lapses shows the migration of subaqueous sand dunes on the clinothem topset, the formation of ephemeral cut‐and‐fill features at the rollover point (few m below mean sea level), the presence of collapse depressions derived by sagging of sediments and fluid expulsion (possibly induced by storm waves) on the foreset, and splays of sand likely reflecting gravity flows on the lower foreset. Though the modern Po Delta is anthropogenic in many respects, its subaqueous clinothem can be studied as a scale model for ancient clinothems that are less resolved geometrically and far less constrained chronologically.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier BV, ( 2024-1), p. 112055-
    Type of Medium: Online Resource
    ISSN: 0031-0182
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1497393-5
    detail.hit.zdb_id: 417718-6
    SSG: 12
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...