GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Sciences  (1)
Material
Publisher
Language
Years
Subjects(RVK)
  • Earth Sciences  (1)
RVK
  • 1
    In: Basin Research, Wiley, Vol. 36, No. 3 ( 2024-05)
    Abstract: The internal fault architecture is crucial in assessing the significance of faults in fluid migration. The development of overlapping zones between segments and subsidiary structures is characteristic of a strike–slip faults. However, their internal architectures and roles in fluid migration are still poorly understood. The Tarim Basin's recently identified strike–slip faults imply that the petroleum resource is hosted in caves that were formed by subsequent dissolution after the formation of the fault zones in carbonate rocks, indicating that the internal fault architecture may be closely linked to the accumulation of petroleum. We investigated the architecture of the strike–slip fault zone using field, geochemical, seismic and well‐logging data. The results revealed that the strike–slip faults contain flower‐like structures in their vertical profiles and an en échelon and ‘X’ conjugate pattern in their horizontal slices. The fault core may become more complex because of the flower structure as fault breccia, slip surfaces, hydrothermal veins, dissolved pores and caves develop, and the damage zone contains multiple stages of fractures with high dip angles. Compared with ‘X’ pattern conjugate faults, NE‐trending strike–slip faults have a more developed and connected fault zone. The fault core acts as a fast conduit for fluid transport and experiences significant elemental losses, and the elemental variations in the damage zone may relate in long‐term and relatively lower‐level fluid–rock interactions. Three fault zone architecture models were created, namely, a releasing bend, a restraining bend and a single segment, and their controlling impacts on fluid migration were addressed accordingly. Our findings imply that fluid migration and accumulation are more favourable at the releasing bend than at the restraining bend and single segment.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...