GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2015
    In:  Quaternary Research Vol. 83, No. 1 ( 2015-01), p. 243-255
    In: Quaternary Research, Cambridge University Press (CUP), Vol. 83, No. 1 ( 2015-01), p. 243-255
    Abstract: We investigated the boron isotopic composition in loess–paleosol sequences in five different profiles in the Chinese Loess Plateau. Three possible boron sources are identified: atmospheric input, carbonates, and weathered silicate rocks. Variations of [Sr], [B] , δ 11 B and the magnetic susceptibility correlate well with the pedogenetic intensity in three out of the five studied profiles, where pedogenesis under a cold–dry climate indicates lower δ 11 B, lower [B], lower magnetic susceptibility and higher [Sr] values. Exceptions to the variations between the δ 11 B and other known proxies were observed in arenaceous soils and the Red Clay sequence: the former suggested that vertical redistribution probably occurred with the boron migration, and the latter indicated an unknown mechanism of susceptibility enhancement. A better correlation between the δ 11 B and magnetic susceptibility and the quantitative estimation of boron budget from each source confirms the influence of paleoenvironmental changes on boron geochemical cycle. Significant positive correlations in Sr/Ca vs. B/Ca and Mg/Ca vs. B/Ca reflect consistent enrichment behavior of those mobile elements into calcium carbonate. The preliminary results imply that boron isotopic compositions in soils can be a potential geochemical proxy to reconstruct the paleoenvironmental changes in loess–paleosol sequences.
    Type of Medium: Online Resource
    ISSN: 0033-5894 , 1096-0287
    RVK:
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1471589-2
    detail.hit.zdb_id: 205711-6
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Photogrammetry and Remote Sensing ; 2019
    In:  Photogrammetric Engineering & Remote Sensing Vol. 85, No. 11 ( 2019-11-01), p. 841-851
    In: Photogrammetric Engineering & Remote Sensing, American Society for Photogrammetry and Remote Sensing, Vol. 85, No. 11 ( 2019-11-01), p. 841-851
    Abstract: Applying limited labeled samples to improve classification results is a challenge in hyperspectral images. Active Learning (AL) and Semisupervised Learning (SSL) are two promising techniques to achieve this challenge. Combining AL with SSL is an excellent idea for hyperspectral image classification. The traditional method, such as the Collaborative Active and Semisupervised Learning algorithm (CASSL), may introduce many incorrect pseudolabels and shows premature convergence. To overcome these drawbacks, a novel framework named Double-Strategy-Check Collaborative Active and Semisupervised Learning (DSC-CASSL) is proposed in this paper. This framework combines two different AL algorithms and SSL in a collaborative mode. The double-strategy verification can gradually improve the pseudolabeling accuracy and facilitate SSL. We evaluate the performance of DSC-CASSL on four hyperspectral data sets and compare it with that of four hyperspectral image classification methods. Our results suggest that DSC-CASSL leads to consistent improvement for hyperspectral image classification.
    Type of Medium: Online Resource
    ISSN: 0099-1112
    RVK:
    Language: English
    Publisher: American Society for Photogrammetry and Remote Sensing
    Publication Date: 2019
    detail.hit.zdb_id: 2317128-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Quaternary Science Reviews, Elsevier BV, Vol. 293 ( 2022-10), p. 107703-
    Type of Medium: Online Resource
    ISSN: 0277-3791
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 780249-3
    detail.hit.zdb_id: 1495523-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Metamorphic Geology, Wiley, Vol. 41, No. 8 ( 2023-10), p. 1031-1047
    Abstract: The integration of garnet‐based petrologic constraints with multimineral geochronologic data in eclogites and blueschists allows the timing and rate of subduction zone metamorphism to be constrained. We present a combined garnet Lu–Hf/Sm–Nd and zircon/rutile U–Pb geochronology study on three eclogites, a garnet‐bearing blueschist, and a micaschist from the Changning–Menglian orogenic belt, a newly discovered ultrahigh‐pressure metamorphic belt in southeast Tibet, in order to characterize tectono‐metamorphic events and determine the duration of Paleo‐Tethys oceanic subduction. Integration of phase equilibrium modelling and conventional thermobarometry for the eclogites defines a clockwise P–T path evolving from blueschist facies conditions at ~1.4 GPa and ~505–530°C to peak eclogite facies conditions at ~2.8 GPa and ~630–640°C, followed by isothermal decompression to amphibolite facies at ~1.0 GPa and ~630–650°C. The Lu–Hf ages of c. 239–236 Ma obtained for the eclogites and the blueschist are indistinguishable from the rutile U–Pb age of c. 239 Ma obtained for the eclogites and, combined with the observation of well‐preserved Rayleigh‐fractionation‐style Mn and Lu zoning profiles in garnet, reflect the timing of early prograde garnet growth. The Sm–Nd ages of c. 242–236 Ma reflect a later period of garnet growth, evidenced by flat and/or M‐shaped Sm zoning profiles. Each of the Sm–Nd ages overlaps, within uncertainty, with its corresponding Lu–Hf age (i.e., from the same garnet fraction). The consistency of the Lu–Hf and Sm–Nd ages indicates a short overall duration of garnet growth from blueschist to eclogite facies metamorphism, reflecting rapid subduction of the oceanic slab. The magmatic zircon U–Pb dates of c. 247 Ma constrain the protolith age of these metabasaltic rocks. The close protolith and the high‐pressure metamorphic ages, together with the consistent garnet Lu–Hf and Sm–Nd ages and the overlapping youngest and oldest metamorphic ages of the oceanic‐type and continental‐type eclogites, respectively, suggest a fast tectonic transition from divergence to convergence highlighted by rapid oceanic subduction, continuous transition from oceanic to continental subduction, and a rapid cooling of the subduction interface.
    Type of Medium: Online Resource
    ISSN: 0263-4929 , 1525-1314
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020499-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Metamorphic Geology, Wiley, Vol. 36, No. 8 ( 2018-10), p. 987-1008
    Abstract: This study presents Lu–Hf geochronology of zoned garnet in high‐ P eclogites from the North Qilian orogenic belt. Selected samples have ~mm‐sized garnet grains that have been sampled with a micro‐drill and analysed for dating. The Lu–Hf dates of bulk garnet separates, micro‐drilled garnet cores and the remnant, rim‐enriched garnet were determined by two‐point isochrons, with cores being consistently older than the bulk‐ and rim‐enriched garnet. The bulk garnet separates of each sample define identical garnet–whole rock isochron date of c . 457 Ma. Consistent U–Pb zircon dates of 455 ± 8 Ma were obtained from the eclogite. The Lu–Hf dates of the drilled cores and rim‐rich separates suggest a minimum garnet growth interval of 468.9 ± 2.4 and 452.1 ± 1.6 Ma. Major and Lu element profiles in the majority of garnet grains show well‐preserved Rayleigh‐style fractionated bell‐shaped Mn and Lu zoning profiles, and increasing Mg from core to rim. Pseudosection modelling indicates that garnet grew along a P–T path from ~470–525°C and ~2.4–2.6  GP a. The exceptional high‐Mn garnet core in one sample indicates an early growth during epidote–blueschist facies metamorphism at 〈 460°C and 〈 0.8  GP a. Therefore, the Lu–Hf dates of drilled cores record the early prograde garnet growth, whereas the Lu–Hf dates of rim‐rich fractions provide a maximum age for the end of garnet growth. The microsampling approach applied in this study can be broadly used in garnet‐bearing rocks, even those without extremely large garnet crystals, in an attempt to retrieve the early metamorphic timing recorded in older garnet cores. Given a proper selection of the drill bit size and a detailed crystal size distribution analysis, the cores of the mm‐sized garnet in most metamorphic rocks can be dated to yield critical constraints on the early timing of metamorphism. This study provides new crucial constraints on the timing of the initial subduction (before c . 469 Ma) and the ultimate closure (earlier than c . 452 Ma) of the fossil Qilian oceanic basin.
    Type of Medium: Online Resource
    ISSN: 0263-4929 , 1525-1314
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020499-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Monthly Weather Review Vol. 133, No. 4 ( 2005-04), p. 725-742
    In: Monthly Weather Review, American Meteorological Society, Vol. 133, No. 4 ( 2005-04), p. 725-742
    Abstract: Typhoon Winnie (1997) was the fourth supertyphoon in the western North Pacific in 1997. In its mature stage, an outer eyewall, consisting of deep convection with a diameter of 370 km, was observed by satellite and radar. Within this unusually large outer eyewall existed an inner eyewall, which consisted of a ring of shallow clouds with a diameter of ∼50 km. In this study, Typhoon Winnie is simulated using a nested-grid version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) with an inner grid length of 9 km. The model reproduces an outer cloud eyewall with a diameter of ∼350 km. The simulated radar reflectivity and hourly precipitation are verified with satellite microwave, infrared, and cloud brightness temperature images. Analysis of the model results indicates that the large outer eyewall in many ways possesses the structure of a typical hurricane eyewall. This includes strong tangential winds and radial inflow outside the eyewall as well as an extremely large horizontal wind shear right at the eyewall. The outer eyewall is characterized with a ring of high vorticity (RHV). This RHV is closely related to a ring of high convergence (RHC). This RHC is caused by organized convective systems along the eyewall. The eye simulated by Winnie is characterized by a broad region of warm, dry slowly sinking air. The factors determining the diameter of eyes in tropical cyclones are discussed by considering the scale of the environmental angular momentum and the maximum kinetic energy achieved by parcels of air originating in the environment and reaching the radius of maximum wind. It is hypothesized that the formation of a large eye is favored by large circulations in which parcels of air are drawn in toward the center of the storm from great distances, and trajectories of air in Winnie that support this hypothesis are shown.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geoderma, Elsevier BV, Vol. 170 ( 2012-01), p. 96-102
    Type of Medium: Online Resource
    ISSN: 0016-7061
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 281080-3
    detail.hit.zdb_id: 2001729-7
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Monthly Weather Review Vol. 131, No. 6 ( 2003-06), p. 1150-1170
    In: Monthly Weather Review, American Meteorological Society, Vol. 131, No. 6 ( 2003-06), p. 1150-1170
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Theoretical and Applied Climatology Vol. 119, No. 3-4 ( 2015-2), p. 791-807
    In: Theoretical and Applied Climatology, Springer Science and Business Media LLC, Vol. 119, No. 3-4 ( 2015-2), p. 791-807
    Type of Medium: Online Resource
    ISSN: 0177-798X , 1434-4483
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1463177-5
    detail.hit.zdb_id: 405799-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Metamorphic Geology, Wiley, Vol. 40, No. 9 ( 2022-12), p. 1447-1466
    Abstract: Accurately defining the peak ages and timescales of high‐temperature metamorphism is fundamental to unravelling tectonic dynamics. However, metamorphic constraints are frequently hampered by a large spread of zircon U–Pb ages without explicit textural relationships. Integrated garnet and zircon petrochronology may clarify ambiguous ages retrieved from ancient high‐temperature metamorphic rocks. There is a long‐standing debate on the interpretation of the spread of zircon ages from c . 2.5–1.8 Ga for the granulites of the North China Craton. In order to clarify the timing and duration of (ultra)high‐temperature metamorphism in the North China Craton, we investigated a mafic granulite and the adjoining gneiss from the Yinshan Block of the North China Craton using zircon and titanite U–Pb geochronology combined with garnet Lu–Hf and Sm–Nd geochronology. Pseudosection modelling and conventional thermobarometric calculations constrain the peak metamorphic conditions to be ~1.0 GPa and ~850°C. The near‐complete lack of major‐element zoning in garnet, aside from ~2 μm diffusion profiles at crystal rims, suggests complete re‐equilibration at peak temperatures followed by fast cooling from high temperatures. The Lu–Hf garnet age of 1870 ± 4 Ma and Sm–Nd age of 1870 ± 7 Ma, determined on the same garnet fractions, are indistinguishable from the zircon U–Pb age of 1866 ± 11 Ma obtained from zircon that grew contemporaneously with garnet, evidenced by the chemical equilibrium of coexisting garnet and zircon, and are additionally consistent with a titanite U–Pb age of 1876 ± 7 Ma. We interpret this close agreement of ages, within uncertainty, coupled to the existence of flat Sm–Nd–Hf profiles in garnet that also has well‐preserved Lu zoning, to reflect a short‐lived high‐temperature metamorphic event that was terminated by rapid exhumation and cooling. The short‐lived ( 〈 4 Myr) high‐temperature metamorphism may be generated in the lowermost parts of the crust through magmatic underplating/intraplating during extension that follows collision of the Ordos and the Yinshan Blocks.
    Type of Medium: Online Resource
    ISSN: 0263-4929 , 1525-1314
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020499-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...