GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Monthly Weather Review Vol. 143, No. 9 ( 2015-09-01), p. 3454-3477
    In: Monthly Weather Review, American Meteorological Society, Vol. 143, No. 9 ( 2015-09-01), p. 3454-3477
    Abstract: Dual-resolution (DR) hybrid variational-ensemble analysis capability was implemented within the community Weather Research and Forecasting (WRF) Model data assimilation (DA) system, which is designed for limited-area applications. The DR hybrid system combines a high-resolution (HR) background, flow-dependent background error covariances (BECs) derived from a low-resolution ensemble, and observations to produce a deterministic HR analysis. As DR systems do not require HR ensembles, they are computationally cheaper than single-resolution (SR) hybrid configurations, where the background and ensemble have equal resolutions. Single-observation tests were performed to document some characteristics of limited-area DR hybrid analyses. Additionally, the DR hybrid system was evaluated within a continuously cycling framework, where new DR hybrid analyses were produced every 6 h over ~3.5 weeks. In the DR configuration presented here, the deterministic backgrounds and analyses had 15-km horizontal grid spacing, but the 32-member WRF Model–based ensembles providing flow-dependent BECs for the hybrid had 45-km horizontal grid spacing. The DR hybrid analyses initialized 72-h WRF Model forecasts that were compared to forecasts initialized by an SR hybrid system where both the ensemble and background had 15-km horizontal grid spacing. The SR and DR hybrid systems were coupled to an ensemble adjustment Kalman filter that updated ensembles each DA cycle. On average, forecasts initialized from 15-km DR and SR hybrid analyses were not statistically significantly different, although tropical cyclone track forecast errors favored the SR-initialized forecasts. Although additional studies over longer time periods and at finer grid spacing are needed to further understand sensitivity to ensemble perturbation resolution, these results suggest users should carefully consider whether SR hybrid systems are worth the extra cost.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Monthly Weather Review, American Meteorological Society, Vol. 141, No. 12 ( 2013-12-01), p. 4350-4372
    Abstract: The Weather Research and Forecasting Model (WRF) “hybrid” variational-ensemble data assimilation (DA) algorithm was used to initialize WRF model forecasts of three tropical cyclones (TCs). The hybrid-initialized forecasts were compared to forecasts initialized by WRF's three-dimensional variational (3DVAR) DA system. An ensemble adjustment Kalman filter (EAKF) updated a 32-member WRF-based ensemble system that provided flow-dependent background error covariances for the hybrid. The 3DVAR, hybrid, and EAKF configurations cycled continuously for ~3.5 weeks and produced new analyses every 6 h that initialized 72-h WRF forecasts with 45-km horizontal grid spacing. Additionally, the impact of employing a TC relocation technique and using multiple outer loops (OLs) in the 3DVAR and hybrid minimizations were explored. Model output was compared to conventional, dropwindsonde, and TC “best track” observations. On average, the hybrid produced superior forecasts compared to 3DVAR when only one OL was used during minimization. However, when three OLs were employed, 3DVAR forecasts were dramatically improved but the mean hybrid performance changed little. Additionally, incorporation of TC relocation within the cycling systems further improved the mean 3DVAR-initialized forecasts but the average hybrid-initialized forecasts were nearly unchanged.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Meteorology and Atmospheric Physics Vol. 122, No. 3-4 ( 2013-11), p. 227-227
    In: Meteorology and Atmospheric Physics, Springer Science and Business Media LLC, Vol. 122, No. 3-4 ( 2013-11), p. 227-227
    Type of Medium: Online Resource
    ISSN: 0177-7971 , 1436-5065
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 232907-4
    detail.hit.zdb_id: 863-1
    detail.hit.zdb_id: 1462145-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Meteorology and Atmospheric Physics Vol. 122, No. 1-2 ( 2013-10), p. 1-18
    In: Meteorology and Atmospheric Physics, Springer Science and Business Media LLC, Vol. 122, No. 1-2 ( 2013-10), p. 1-18
    Type of Medium: Online Resource
    ISSN: 0177-7971 , 1436-5065
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 232907-4
    detail.hit.zdb_id: 863-1
    detail.hit.zdb_id: 1462145-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Monthly Weather Review, American Meteorological Society, ( 2024-03-11)
    Abstract: The microphysical parameterization scheme employed in four-dimensional variational data assimilation (4D-Var) plays an important role in the assimilation of humidity and cloud-sensitive observations. In this study, a newly developed full-hydrometeor assimilation scheme, integrating warm-rain and cold-cloud processes, has been implemented in the Weather Research and Forecasting (WRF) 4D-Var system. This scheme is based on the WSM6 single-moment microphysical parameterization scheme. Its primary objective is to directly assimilate radar reflectivity observations, with the goal of evaluating its effects on model initialization and subsequent forecasting performance. Four assimilation experiments were conducted to assess the performance of the full-hydrometeor assimilation scheme against the warm-rain assimilation scheme. These experiments also investigated reflectivity assimilation using both indirect and direct methods. We found that the nonlinearity of the radar operator in the two directly reflectivity assimilation experiments requires more iterations for cost function reduction than in indirect assimilation method. The hydrometeor fields were reasonably analyzed using the full-hydrometeor assimilation scheme, particularly improving the simulation of ice-phase hydrometeors and reflectivity above the melting layer. The assimilation of radar reflectivity led to improvements in short-term (0-3 hour) precipitation forecasting with the full-hydrometeor assimilation scheme. Assimilation experiments across multiple case studies reaffirmed that assimilating radar reflectivity observations with the full-hydrometeor assimilation scheme can accelerated model spin-up and yielded enhancements in 0-3 hour total accumulate precipitation forecasts for a range of precipitation thresholds.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2024
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...