GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Photogrammetry and Remote Sensing ; 2020
    In:  Photogrammetric Engineering & Remote Sensing Vol. 86, No. 8 ( 2020-08-01), p. 503-508
    In: Photogrammetric Engineering & Remote Sensing, American Society for Photogrammetry and Remote Sensing, Vol. 86, No. 8 ( 2020-08-01), p. 503-508
    Abstract: Forests are an extremely valuable natural resource for human development. Satellite remote sensing technology has been widely used in global and regional forest monitoring and management. Accurate data on forest degradation and disturbances due to forest fire is important to understand forest ecosystem health and forest cover conditions. For a long time, satellite-based global burned area products were only available at coarse native spatial resolution, which was difficult for detecting small and highly fragmented fires. In order to analyze global burned forest areas at finer spatial resolution, in this study a novel, multi-year 30 meter resolution global burned forest area product was generated and released based on Landsat time series data. Statistics indicate that in 2000, 2005, 2010, 2015, and 2018 the total area of burned forest land in the world was 94.14 million hm 2 , 96.65 million hm 2 , 59.52 million hm 2 , 76.42 million hm 2 , and 83.70 million hm 2 , respectively, with an average value of 82.09 million hm 2 . Spatial distribution patterns of global burned forest areas were investigated across different continents and climatic domains. It was found that burned forest areas were mainly distributed in Africa and Oceania, which accounted for approximately 73.85% and 6.81% of the globe, respectively. By climatic domain, the largest burned forest areas occurred in the tropics, with proportions between 88.44% and 95.05% of the world's total during the study period. Multi-year dynamic analysis shows the global burned forest areas varied considerably due to global climate anomalies, e.g., the La Niña phenomenon.
    Type of Medium: Online Resource
    ISSN: 0099-1112
    RVK:
    Language: English
    Publisher: American Society for Photogrammetry and Remote Sensing
    Publication Date: 2020
    detail.hit.zdb_id: 2317128-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Photogrammetry and Remote Sensing ; 2015
    In:  Photogrammetric Engineering & Remote Sensing Vol. 81, No. 9 ( 2015-09-01), p. 745-751
    In: Photogrammetric Engineering & Remote Sensing, American Society for Photogrammetry and Remote Sensing, Vol. 81, No. 9 ( 2015-09-01), p. 745-751
    Type of Medium: Online Resource
    ISSN: 0099-1112
    RVK:
    Language: English
    Publisher: American Society for Photogrammetry and Remote Sensing
    Publication Date: 2015
    detail.hit.zdb_id: 2317128-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Monthly Weather Review Vol. 150, No. 11 ( 2022-11), p. 2935-2957
    In: Monthly Weather Review, American Meteorological Society, Vol. 150, No. 11 ( 2022-11), p. 2935-2957
    Abstract: A local long-lived convective system developed at midnight over inland South China, producing record-breaking rainfall in Guangzhou on 7 May 2017. This study examines the physical processes responsible for nocturnal convection initiation (CI) and growth. Observational analyses show that the CI occurs in the warm sector under weakly forced synoptic conditions at 500 hPa, while moderate but nocturnally enhanced low-level southeasterlies with a mesoscale moist tongue at 925 hPa intrude inland from the northern South China Sea. Convection-permitting model results show that mesoscale low-level convergence and increased moisture at the leading edge of the southeasterlies are favorable for CI dynamically and thermodynamically. Local ascent and potential instability are further enhanced by orographic lifting and warm moist air from the urban surface, respectively, which trigger convection in northern Guangzhou. The mesoscale moist tongue of southeasterly flows then meets convectively generated outflows, thereby maintaining strong updrafts and continuously triggering back-building convective cells in eastern Guangzhou. Sensitivity tests are conducted to estimate the relative roles of ambient southeasterly moist tongue and urban thermal effects. The southeasterly moist tongue provides moisture that is crucial for CI, while warm moist air from the urban surface is lifted at the leading edge of the southeasterlies and locally facilitates convection. Therefore, the mesoscale processes of lifting and moistening due to nocturnal southeasterlies and their strong interaction with the local factors (orographic lifting, urban heating, and cold-pool-related ascent) provide the sustained lifting and instability crucial for triggering the local long-lived convective systems. The multiscale processes shed light on the understanding of the nocturnal warm-sector heavy rainfall inland.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...