GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  International Journal of Climatology Vol. 43, No. 7 ( 2023-06-15), p. 3476-3492
    In: International Journal of Climatology, Wiley, Vol. 43, No. 7 ( 2023-06-15), p. 3476-3492
    Abstract: The change of the precipitation characteristics over South Korea is investigated using long‐term (60 years) hourly precipitation records from surface stations focusing on extended summer (June–September) and rainy season (Changma). The precipitation characteristics including extreme events ( 〉 30 mm·h −1 or 〉 100 mm·day −1 ) are also compared for the past (1961–1990) and recent (1991–2020) climatology. The amount of summer precipitation shows a notable increase over South Korea (2.6 mm·day −1 ·century −1 ) during the last 60 years (1961–2020) although it is smaller than recent 48‐year trend measured in North Korea (9.7 mm·day −1 ·century −1 ). Precipitation amounts are significantly increased than past climatology particularly in 70–100 and 200 mm·day −1 intensity ranges. The frequency of extreme precipitation also exhibits an increasing trend (1.0 frequency·century −1 ) during the last 60 years over South Korea. The frequency of extreme precipitation has been doubled in the recent climatology compared to the past climatology. Daily precipitations in top 1 percentile present clear increasing trends during the extended summer and Changma season in South Korea. Further investigation using gridded precipitation reveals that the similar mean and extreme precipitation increases are observed over the wider regions in East Asia, including central China and southern Japan. This result implies that the long‐term precipitation change over South Korea is related to a large‐scale circulation change in the East Asian summer monsoon.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Computers & Geosciences Vol. 161 ( 2022-04), p. 105072-
    In: Computers & Geosciences, Elsevier BV, Vol. 161 ( 2022-04), p. 105072-
    Type of Medium: Online Resource
    ISSN: 0098-3004
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1499977-8
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Monthly Weather Review, American Meteorological Society, ( 2021-07-01)
    Abstract: In the summer of 2020, South Korea experienced record-breaking rainfall due to 15 consecutive heavy rainfall events (HREs) from mid-June to early September. Among them, 11 HREs occurred in late June to mid-August with distinct synoptic characteristics depending on the occurrence period. All HREs from 29 June to 27 July (P1) were triggered by extratropical cyclones, while those from 28 July to 15 August (P2) mainly occurred along monsoon rainband. We argue that their transition is associated with atmospheric teleconnections. During P1, the western North Pacific subtropical high (WNPSH) anomalously extended westward, but its northward expansion was hindered by the meridional wave train from the suppressed convection over the South China Sea. This condition prevented a northward migration of the monsoon rainband but allowed more extratropical cyclones to pass over the Korean Peninsula, resulting in four HREs. During P2, the South China Sea convection was enhanced, and its circulation response prompted an abrupt northward expansion of the WNPSH with a large pressure gradient along its northern boundary. With intensified southwesterly moisture transport, a monsoon rainband was activated over the Korean Peninsula, producing six HREs. The opposite phases of the summer North Atlantic Oscillation, i.e., negative in P1 but positive in P2, further contributed to the anomalous monsoon circulation by modulating the mid-latitude circulation response to the South China Sea convection. This study demonstrates that the nature of summertime HREs in East Asia can be strongly modulated by remote forcings.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  International Journal of Climatology Vol. 42, No. 8 ( 2022-06-30), p. 4351-4359
    In: International Journal of Climatology, Wiley, Vol. 42, No. 8 ( 2022-06-30), p. 4351-4359
    Abstract: The impact of the quasi‐biennial oscillation (QBO) on the surface air temperature (SAT) in the Northern Hemisphere extratropics is investigated. It is found that the QBO, defined as 70‐hPa zonal wind in the deep tropics, is negatively correlated with the SAT over the western North Pacific in February and March. Cold temperature anomaly appears during the QBO westerly phase. Such relationship is likely mediated by the subtropical jet. During the QBO westerly phase, a horseshoe‐shaped zonal wind anomaly forms in the upper troposphere and lower stratosphere and is connected to the equatorward shift of the Asia‐Pacific jet. This equatorward jet shift is accompanied by a cyclonic circulation anomaly in the subtropical North Pacific and an anticyclonic circulation anomaly over northern Eurasia in the troposphere. The resultant temperature advection brings cold air to East Asia and the western North Pacific. This regional downward coupling in February and March, which is not sensitive to El Niño‐Southern Oscillation, has become statistically significant in recent decades.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  International Journal of Climatology Vol. 38, No. 10 ( 2018-08), p. 4043-4050
    In: International Journal of Climatology, Wiley, Vol. 38, No. 10 ( 2018-08), p. 4043-4050
    Abstract: Springtime extra‐tropical cyclones (ETCs) in Northeast Asia and the associated precipitation anomalies are examined by objectively tracking ETCs from reanalysis data. The cluster analyses reveal that Northeast Asian cyclones are largely grouped into two distinct tracks, that is, north and south tracks, depending on their pathways. The south‐track ETCs typically form over southeast China and travel towards the Japanese Islands, while the north‐track ETCs are first detected around Mongolia and move southeastwards to the Korean Peninsula. Unlike the latter ones, the former ones exhibit a significant negative trend in their occurrence frequency (−1.17 per decade from 1979 to 2014), explaining a negative precipitation trend over the broad regions from southeast China to the Kyushu Islands. It is argued that the reduction of the south‐track ETCs is at least in part caused by the strengthened convection over the tropical western Pacific. The resulting Gill‐type response in the subtropics tends to drive reduced moisture supplies to southern China, likely causing an unfavourable condition for the development of the south‐track ETCs.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Monthly Weather Review Vol. 141, No. 10 ( 2013-10-01), p. 3610-3625
    In: Monthly Weather Review, American Meteorological Society, Vol. 141, No. 10 ( 2013-10-01), p. 3610-3625
    Abstract: Extratropical cyclones play a principal role in wintertime precipitation and severe weather over North America. On average, the greatest number of cyclones track 1) from the lee of the Rocky Mountains eastward across the Great Lakes and 2) over the Gulf Stream along the eastern coastline of North America. However, the cyclone tracks are highly variable within individual winters and between winter seasons. In this study, the authors apply a Lagrangian tracking algorithm to examine variability in extratropical cyclone tracks over North America during winter. A series of methodological criteria is used to isolate cyclone development and decay regions and to account for the elevated topography over western North America. The results confirm the signatures of four climate phenomena in the intraseasonal and interannual variability in North American cyclone tracks: the North Atlantic Oscillation (NAO), the El Niño–Southern Oscillation (ENSO), the Pacific–North American pattern (PNA), and the Madden–Julian oscillation (MJO). Similar signatures are found using Eulerian bandpass-filtered eddy variances. Variability in the number of extratropical cyclones at most locations in North America is linked to fluctuations in Rossby wave trains extending from the central tropical Pacific Ocean. Only over the far northeastern United States and northeastern Canada is cyclone variability strongly linked to the NAO. The results suggest that Pacific sector variability (ENSO, PNA, and MJO) is a key contributor to intraseasonal and interannual variability in the frequency of extratropical cyclones at most locations across North America.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Monthly Weather Review Vol. 151, No. 12 ( 2023-12), p. 3113-3132
    In: Monthly Weather Review, American Meteorological Society, Vol. 151, No. 12 ( 2023-12), p. 3113-3132
    Abstract: Recurving tropical cyclones (TCs) in the western North Pacific often cause heavy rainfall events (HREs) in East Asia. However, how their interactions with midlatitude flows alter the characteristics of HREs remains unclear. The present study examines the synoptic–dynamic characteristics of HREs directly resulting from TCs in South Korea with a focus on the role of midlatitude baroclinic condition. The HREs are categorized into two clusters based on midlatitude tropopause patterns: strongly (C1) and weakly (C2) baroclinic conditions. C1, which is common in late summer, is characterized by a well-defined trough–ridge couplet and jet streak at the tropopause. As TCs approach, the trough–ridge couplet amplifies, but is anchored by divergent TC outflow. This leads to phase locking of the upstream trough with TCs and thereby prompts substantial structural changes of TCs reminiscent of extratropical transition. The synergistic TC–midlatitude flow interactions allow for widely enhanced quasigeostrophic forcing for ascent to the north of the TC center. This allows HREs to occur even before TC landfall with more inland rainfall than C2 HREs. In contrast, C2, which is mainly observed in midsummer, does not accompany the undulating tropopause. In the absence of strong interactions with midlatitude flows, TCs rapidly dissipate after HREs while maintaining their tropical features. The upward motion is confined to the inherent TC convection, and thus HREs occur only when TCs are located in the vicinity of the country. These findings suggest that midlatitude baroclinic condition determines the spatial extent of TC rainfall and the timing of TC-induced HREs in South Korea. Significance Statement This study suggests that the midlatitude flows can substantially modulate heavy rainfall events directly caused by tropical cyclones. By analyzing the 42-yr tropical cyclone–induced heavy rainfall events in South Korea, it is found that tropical cyclones and midlatitude flows strongly interact with each other, especially when the midlatitude flows meander in conjunction with a strong jet stream. Their synergistic interactions result in a poleward expansion of the tropical cyclones’ precipitation shields, leading to heavy rainfall events even before they make landfall in the country. Consequently, it is advisable to carefully monitor the midlatitude conditions as well as tropical cyclones themselves as earlier heavy rainfall warnings may be necessary depending on the former.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  International Journal of Climatology Vol. 35, No. 10 ( 2015-08), p. 2759-2776
    In: International Journal of Climatology, Wiley, Vol. 35, No. 10 ( 2015-08), p. 2759-2776
    Abstract: Extratropical cyclone ( ETC ) tracks across eastern Canada are examined by applying a Lagrangian tracking algorithm to the lower‐tropospheric relative vorticity field of reanalysis data. Both the seasonal cycle and the interannual variability of ETCs are quantified in terms of overall cyclone frequency, intensity, and regions of development and decay. We find that ETCs travelling to eastern Canada tend to develop over the Rockies, the Great Lakes and the US East Coast. The ETCs are most intense over Newfoundland and the North Atlantic Ocean, confirming previous findings. While ETCs at cities along the Atlantic coastline (e.g. St. John's) are dominated by East Coast cyclones (which are intense in winter), those inland (e.g. Toronto) track primarily from the Great Lakes. ETCs that develop over the Gulf of Mexico affect eastern Canada infrequently, but those that do tend to be intense. The interannual variability of the wintertime ETCs is influenced by the El Niño‐Southern Oscillation ( ENSO ). Significant ENSO ‐related variability is found over most regions of southern Canada, except on the east coast. Although ETCs at Toronto are significantly modulated by ENSO , no visible changes are found at St. John's. These ENSO ‐related ETC changes are mostly due to the shifts in ETC development regions, with minor changes in the travelling direction of ETCs .
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Monthly Weather Review Vol. 149, No. 11 ( 2021-11), p. 3875-3893
    In: Monthly Weather Review, American Meteorological Society, Vol. 149, No. 11 ( 2021-11), p. 3875-3893
    Abstract: This study identifies diverse synoptic weather patterns of warm-season heavy rainfall events (HREs) in South Korea. The HREs not directly connected to tropical cyclones (TCs) (81.1%) are typically associated with a midlatitude cyclone from eastern China, the expanded North Pacific high, and strong southwesterly moisture transport in between. They are frequent both in the first (early summer) and second rainy periods (late summer) with impacts on the south coast and west of the mountainous region. In contrast, the HREs resulting from TCs (18.9%) are caused by the synergetic interaction between the TC and meandering midlatitude flow, especially in the second rainy period. The strong south-southeasterly moisture transport makes the southern and eastern coastal regions prone to the TC-driven HREs. By applying a self-organizing map algorithm to the non-TC HREs, their surface weather patterns are further classified into six clusters. Clusters 1 and 3 exhibit a frontal boundary between the low and high with differing relative strengths. Clusters 2 and 5 feature an extratropical cyclone migrating from eastern China under different background sea level pressure patterns. Cluster 4 is characterized by the expanded North Pacific high with no organized negative sea level pressure anomaly, and cluster 6 displays a development of a moisture pathway between the continental and oceanic highs. Each cluster exhibits a distinct spatiotemporal occurrence distribution. The result provides useful guidance for HRE prediction by depicting important factors to be differently considered depending on their synoptic categorization.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Monthly Weather Review Vol. 141, No. 2 ( 2013-02-01), p. 707-727
    In: Monthly Weather Review, American Meteorological Society, Vol. 141, No. 2 ( 2013-02-01), p. 707-727
    Abstract: The performance of the Global Environmental Multiscale (GEM) model, the Canadian operational numerical model, in reproducing atmospheric low-frequency variability is evaluated in the context of Northern Hemisphere blocking climatology. The validation is conducted by applying a comprehensive but relatively simple blocking detection algorithm to a 20-yr (1987–2006) integration of the GEM model in climate mode. The comparison to reanalysis reveals that, although the model can reproduce Northern Hemisphere blocking climatology reasonably well, the maximum blocking frequency over the North Atlantic and western Europe is generally underestimated and its peak season is delayed from late winter to spring. This contrasts with the blocking frequency over the North Pacific, which is generally overestimated during all seasons. These misrepresentations of blocking climatology are found to be largely associated with the biases in climatological background flow. The modeled stationary waves show a seasonal delay in zonal wavenumber 1 and an eastward extension in zonal wavenumber-2 components consistent with blocking frequency biases. High-frequency eddies are, however, consistently underestimated both in the North Atlantic and Pacific, indicating that the biases in eddy fields might not be the main reason for the blocking biases in the North Pacific.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...