GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Monthly Weather Review Vol. 149, No. 8 ( 2021-08), p. 2755-2776
    In: Monthly Weather Review, American Meteorological Society, Vol. 149, No. 8 ( 2021-08), p. 2755-2776
    Abstract: A complex and underexplored relationship exists between atmospheric rivers (ARs) and mesoscale frontal waves (MFWs). The present study further explores and quantifies the importance of diabatic processes to MFW development and the AR–MFW interaction by simulating two ARs impacting Northern California’s flood-vulnerable Russian River watershed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) with and without the effects of latent heating. Despite the storms’ contrasting characteristics, diabatic processes within the system were critical to the development of MFWs, the timing and magnitude of integrated vapor transport (IVT), and precipitation impacts over the Russian River watershed in both cases. Low-altitude circulations and lower-tropospheric moisture content in and around the MFWs are considerably reduced without latent heating, contributing to a decrease in moisture transport, moisture convergence, and IVT. Differences in IVT are not consistently dynamic (i.e., wind-driven) or thermodynamic (i.e., moisture-driven), but instead vary by case and by time throughout each event. For one event, AR conditions over the watershed persisted for 6 h less and the peak IVT occurred 6 h earlier and was reduced by ~17%; weaker orographic and dynamic precipitation forcings reduced precipitation totals by ~64%. Similarly, turning off latent heating shortened the second event by 24 h and reduced precipitation totals by ~49%; the maximum IVT over the watershed was weakened by ~42% and delayed by 18 h. Thus, sufficient representation of diabatic processes, and by inference, water vapor initial conditions, is critical for resolving MFWs, their feedbacks on AR evolution, and associated precipitation forecasts on watershed scales.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Monthly Weather Review Vol. 148, No. 4 ( 2020-04-01), p. 1389-1406
    In: Monthly Weather Review, American Meteorological Society, Vol. 148, No. 4 ( 2020-04-01), p. 1389-1406
    Abstract: The pre-cold-frontal low-level jet (LLJ) is an important contributor for water vapor transport within atmospheric rivers, though its dynamics are not completely understood. The present study investigates the LLJ using dropsonde observations from 24 cross-atmospheric river transects taken during the CalWater-2014, 2015 and the AR-Recon 2016, 2018 field campaigns. It is found that the LLJ, located at ~1-km elevation ahead of the cold front, has an average maximum wind speed of 30 m s−1 and is strongly supergeostrophic with an average ageostrophic component of 6 m s−1. The alongfront ageostrophy occurs within the atmospheric layer (750–1250 m) known to strongly control orographic precipitation associated with atmospheric rivers. The ERA5 reanalysis product is used to both validate the observed geostrophic winds and investigate the supergeostrophic jet dynamics. The comparison demonstrates that there is no systematic bias in the observed geostrophic wind but that the ERA5 LLJ total wind field is generally biased low by an amount consistent with the observed ageostrophy. One of the few cases in which the ERA5 produces an ageostrophic LLJ occurs on 13 February 2016, which is used to investigate the dynamical processes responsible for the ageostrophy. This analysis demonstrates that the isallobaric (pressure tendency) term serves to accelerate the ageostrophic jet, and the Coriolis torque and advective tendency terms serve to propagate the jet normal to the LLJ. Therefore, if a model is to accurately represent the LLJ, it must adequately resolve processes contributing toward the pressure tendencies along the cold front.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 1998
    In:  Monthly Weather Review Vol. 126, No. 10 ( 1998-10), p. 2521-2554
    In: Monthly Weather Review, American Meteorological Society, Vol. 126, No. 10 ( 1998-10), p. 2521-2554
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1998
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2001
    In:  Monthly Weather Review Vol. 129, No. 8 ( 2001-08), p. 1968-1986
    In: Monthly Weather Review, American Meteorological Society, Vol. 129, No. 8 ( 2001-08), p. 1968-1986
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2001
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2002
    In:  Monthly Weather Review Vol. 130, No. 6 ( 2002-06), p. 1468-1492
    In: Monthly Weather Review, American Meteorological Society, Vol. 130, No. 6 ( 2002-06), p. 1468-1492
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 2 ( 2014-02-01), p. 905-921
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 2 ( 2014-02-01), p. 905-921
    Abstract: Narrow corridors of water vapor transport known as atmospheric rivers (ARs) contribute to extreme precipitation and flooding along the West Coast of the United States, but knowledge of their influence over the interior is limited. Here, the authors use Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data, Climate Prediction Center (CPC) precipitation analyses, and Snowpack Telemetry (SNOTEL) observations to describe the characteristics of cool-season (November–April) ARs over the western United States. It is shown that AR frequency and duration exhibit a maximum along the Oregon–Washington coast, a strong transition zone upwind (west) of and over the Cascade–Sierra ranges, and a broad minimum that extends from the “high” Sierra south of Lake Tahoe eastward across the central Great Basin and into the deep interior. East of the Cascade–Sierra ranges, AR frequency and duration are largest over the interior northwest, while AR duration is large compared to AR frequency over the interior southwest. The fractions of cool-season precipitation and top-decile 24-h precipitation events attributable to ARs are largest over and west of the Cascade–Sierra ranges. Farther east, these fractions are largest over the northwest and southwest interior, with distinctly different large-scale patterns and AR orientations enabling AR penetration into each of these regions. In contrast, AR-related precipitation over the Great Basin east of the high Sierra is rare. These results indicate that water vapor depletion over major topographic barriers is a key contributor to AR decay, with ARs playing a more prominent role in the inland precipitation climatology where lower or less continuous topography facilitates the inland penetration of ARs.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Monthly Weather Review, American Meteorological Society, Vol. 150, No. 1 ( 2022-01), p. 215-234
    Abstract: Deep-learning (DL) postprocessing methods are examined to obtain reliable and accurate probabilistic forecasts from single-member numerical weather predictions of integrated vapor transport (IVT). Using a 34-yr reforecast, based on the Center for Western Weather and Water Extremes West-WRF mesoscale model of North American West Coast IVT, the dynamically/statistically derived 0–120-h probabilistic forecasts for IVT under atmospheric river (AR) conditions are tested. These predictions are compared with the Global Ensemble Forecast System (GEFS) dynamic model and the GEFS calibrated with a neural network. In addition, the DL methods are tested against an established, but more rigid, statistical–dynamical ensemble method (the analog ensemble). The findings show, using continuous ranked probability skill score and Brier skill score as verification metrics, that the DL methods compete with or outperform the calibrated GEFS system at lead times from 0 to 48 h and again from 72 to 120 h for AR vapor transport events. In addition, the DL methods generate reliable and skillful probabilistic forecasts. The implications of varying the length of the training dataset are examined, and the results show that the DL methods learn relatively quickly and ∼10 years of hindcast data are required to compete with the GEFS ensemble.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Monthly Weather Review, American Meteorological Society, Vol. 141, No. 12 ( 2013-12-01), p. 4211-4233
    Abstract: Five 915-MHz wind profilers and GPS receivers across California's northern Central Valley (CV) and adjacent Sierra foothills and coastal zone, in tandem with a 6-km-resolution gridded reanalysis dataset generated from the Weather Research and Forecasting Model, document key spatiotemporal characteristics of Sierra barrier jets (SBJs), landfalling atmospheric rivers (ARs), and their interactions. Composite kinematic and thermodynamic analyses are based on the 13 strongest SBJ cases observed by the Sloughhouse profiler between 2009 and 2011. The analyses show shallow, cool, south-southeasterly (i.e., Sierra parallel) flow and associated water vapor transport strengthening with time early in the 24-h compositing period, culminating in an SBJ core at & lt;1 km above ground over the eastern CV. The SBJ core increases in altitude up the Sierra's windward slope and poleward toward the north end of the CV, but it does not reach the westernmost CV. Above the developing SBJ, strengthening southwesterly flow descends temporally in response to the landfalling AR. The moistening SBJ reaches maximum intensity during the strongest AR flow aloft, at which time the core of the AR-parallel vapor transport slopes over the SBJ. The inland penetration of the AR through the San Francisco Bay gap in the coastal mountains contributes to SBJ moistening and deepening. The SBJ subsequently weakens with the initial cold-frontal period aloft, during which the shallow flow shifts to southwesterly and the heaviest precipitation falls in the Sierra foothills. An orographic precipitation analysis quantitatively links the Sierra-perpendicular (nearly AR parallel) vapor fluxes to enhanced precipitation along the Sierra's windward slope and the SBJ-parallel fluxes to heavy precipitation at the north end of the CV.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Monthly Weather Review Vol. 134, No. 8 ( 2006-08-01), p. 2072-2094
    In: Monthly Weather Review, American Meteorological Society, Vol. 134, No. 8 ( 2006-08-01), p. 2072-2094
    Abstract: Observations from northern California during the California Landfalling Jets (CALJET) experiment are used to examine the mean characteristics of precipitation and their variances as functions of synoptic and topographic regimes. Ten cases involving the landfall of extratropical cyclones are analyzed with radar and rain gauge data collected at two sites: one in the coastal mountains north of San Francisco (CZD) and the other in the Central Valley just west of Sacramento (KDAX). Aside from the melting-layer bright band, the most striking feature in the 10-case composite vertical profile of radar reflectivity at CZD was a distinct change in slope about 2.5 km above the bright band. This “shoulder” is thought to represent a change in the growth rate of hydrometeors. Although the bright band was quite distinct, about one-third of the profiles in the composite did not exhibit this feature. These nonbrightband (NBB) profiles had a low-level slope where reflectivity increased with decreasing altitude, a structure suggesting that collision–coalescence was the primary growth process. The relationship between surface rainfall rate and low-level radar reflectivity implies that all profiles were composed of larger numbers of small drops than expected from a Marshall–Palmer drop size distribution, a trend that was especially apparent for NBB profiles. Synoptic variability of precipitation characteristics at CZD were examined by identifying five distinct regimes (cold sector, warm front, warm sector, cold front, and cool sector) based on a simplified conceptual model. The shoulder remained approximately 2.5 km above the bright band in each regime. Rainfall intensity was highest during the cold-frontal regime and NBB rainfall was most common during the warm-frontal, warm-sector, and cool-sector regimes. Topographic variability of precipitation characteristics was investigated by comparing results at CZD and KDAX. A shoulder structure located about 2.5 km above the bright band was also evident in the KDAX profiles, suggesting that this feature is related to large-scale dynamic, thermodynamic, and microphysical processes rather than orographic effects. The relationship between surface rainfall rate and low-level radar reflectivity near KDAX closely followed a trend expected for a Marshall–Palmer drop size distribution, implying the presence of relatively larger raindrops than observed at CZD and indicating that NBB rainfall occurs less frequently near KDAX.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2001
    In:  Monthly Weather Review Vol. 129, No. 11 ( 2001-11), p. 2633-2659
    In: Monthly Weather Review, American Meteorological Society, Vol. 129, No. 11 ( 2001-11), p. 2633-2659
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2001
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...