GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geography  (4)
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  CATENA Vol. 201 ( 2021-06), p. 105185-
    In: CATENA, Elsevier BV, Vol. 201 ( 2021-06), p. 105185-
    Type of Medium: Online Resource
    ISSN: 0341-8162
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1492500-X
    detail.hit.zdb_id: 519608-5
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    SAGE Publications ; 2015
    In:  Journal of Current Southeast Asian Affairs Vol. 34, No. 1 ( 2015-04), p. 57-83
    In: Journal of Current Southeast Asian Affairs, SAGE Publications, Vol. 34, No. 1 ( 2015-04), p. 57-83
    Abstract: Attempting to create greater understanding of the political dynamics that influence domestic disaster relief and management (DRM) in Thailand, this article takes a closer look at these dynamics by outlining the main actors involved in flood-related DRM. It acknowledges the importance of international and military actors but emphasises the role of national and subnational authorities. The article then identifies the central issues of DRM governance as capacity and bureaucracy and discusses these through a chronological assessment of the flood crisis in Thailand in 2011, interweaving the colourful domestic politics with various political cleavages and dichotomies, and thereby distinguishing between three main dichotomies which it considers as the central drivers of the political dynamics and institutional development of DRM. These issues can be summarised as old versus new institutions, technocracy versus bureaucracy and centralised (but with direct people-orientation through greater channels of citizenry participation) versus decentralised bureaucracy with an indirect orientation towards people.
    Type of Medium: Online Resource
    ISSN: 1868-1034 , 1868-4882
    RVK:
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2015
    detail.hit.zdb_id: 2490419-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Monthly Weather Review Vol. 147, No. 9 ( 2019-09-01), p. 3283-3300
    In: Monthly Weather Review, American Meteorological Society, Vol. 147, No. 9 ( 2019-09-01), p. 3283-3300
    Abstract: This work combines two auxiliary techniques, namely the one-step-ahead (OSA) smoothing and the hybrid formulation, to boost the forecasting skills of a storm surge ensemble Kalman filter (EnKF) forecasting system. Bayesian filtering with OSA-smoothing enhances the robustness of the ensemble background statistics by exploiting the data twice: first to constrain the sampling of the forecast ensemble with the future observation, and then to update the resulting ensemble. This is expected to improve the behavior of EnKF-like schemes during the strongly nonlinear surges periods, but requires integrating the ensemble with the forecast model twice, which could be computationally demanding. The hybrid flow-dependent/static formulation of the EnKF background error covariance is then considered to enable the implementation of the filter with a small flow-dependent ensemble size, and thus less model runs. These two methods are combined within an ensemble transform Kalman filter (ETKF). The resulting hybrid ETKF with OSA smoothing is tested, based on twin experiments, using a realistic setting of the Advanced Circulation (ADCIRC) model configured for storm surge forecasting in the Gulf of Mexico and assimilating pseudo-observations of sea surface levels from a network of buoys. The results of our numerical experiments suggest that the proposed filtering system significantly enhances ADCIRC forecasting skills compared to the standard ETKF without increasing the computational cost.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Monthly Weather Review Vol. 146, No. 2 ( 2018-02), p. 561-581
    In: Monthly Weather Review, American Meteorological Society, Vol. 146, No. 2 ( 2018-02), p. 561-581
    Abstract: The ensemble Kalman filter (EnKF) is widely used for sequential data assimilation. It operates as a succession of forecast and analysis steps. In realistic large-scale applications, EnKFs are implemented with small ensembles and poorly known model error statistics. This limits their representativeness of the background error covariances and, thus, their performance. This work explores the efficiency of the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem to enhance the data assimilation performance of EnKFs. Filtering with OSA smoothing introduces an updated step with future observations, conditioning the ensemble sampling with more information. This should provide an improved background ensemble in the analysis step, which may help to mitigate the suboptimal character of EnKF-based methods. Here, the authors demonstrate the efficiency of a stochastic EnKF with OSA smoothing for state estimation. They then introduce a deterministic-like EnKF-OSA based on the singular evolutive interpolated ensemble Kalman (SEIK) filter. The authors show that the proposed SEIK-OSA outperforms both SEIK, as it efficiently exploits the data twice, and the stochastic EnKF-OSA, as it avoids observational error undersampling. They present extensive assimilation results from numerical experiments conducted with the Lorenz-96 model to demonstrate SEIK-OSA’s capabilities.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...