GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry/Pharmacy  (1)
Material
Language
Years
Subjects(RVK)
  • Chemistry/Pharmacy  (1)
RVK
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Journal of Materials Research Vol. 27, No. 21 ( 2012-11-14), p. 2718-2723
    In: Journal of Materials Research, Springer Science and Business Media LLC, Vol. 27, No. 21 ( 2012-11-14), p. 2718-2723
    Abstract: In spite of its large lattice mismatch, Bi grows epitaxially in (111) orientation and almost free of defects on Si substrates. On Si(111), the Bi film is under compressive strain of less than 2% and shows a 6–7 registry to the Si(111)-(7 × 7) substrate. On Si(001), the compressive lattice strain of 2.3% results in the formation of an array of misfit dislocations with a periodicity of 20 nm. We studied the cooling process of ultrathin bismuth films deposited on Si(111) and Si(001) substrates upon excitation with short laser pulses. With ultrafast electron diffraction, we determined the thermal boundary conductance σ K from the exponential decay of the transient film temperature. Within the error bars of 7%, the experimentally determined thermal boundary conductances are the same for both substrates and thus independent of the presence of a periodic array of misfit dislocations and the different substrate orientation.
    Type of Medium: Online Resource
    ISSN: 0884-2914 , 2044-5326
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 54876-5
    detail.hit.zdb_id: 2015297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...