GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology  (1)
Material
Language
Years
Subjects(RVK)
  • Biology  (1)
RVK
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2018
    In:  Applied and Environmental Microbiology Vol. 84, No. 24 ( 2018-12-15)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 84, No. 24 ( 2018-12-15)
    Abstract: Arsenic-resistant bacteria have evolved various efflux systems for arsenic resistance. Five arsenic efflux proteins, ArsB, Acr3, ArsP, ArsJ, and MSF1, have been reported. In this study, comprehensive analyses were performed to study the function of a putative major facilitator superfamily gene, arsK , and the regulation of arsK transcriptional expression in Agrobacterium tumefaciens GW4. We found that (i) arsK is located on an arsenic gene island in strain GW4. ArsK orthologs are widely distributed in arsenic-resistant bacteria and are phylogenetically divergent from the five reported arsenic efflux proteins, indicating that it may be a novel arsenic efflux transporter. (ii) Reporter gene assays showed that the expression of arsK was induced by arsenite [As(III)], antimonite [Sb(III)] , trivalent roxarsone [Rox(III)], methylarsenite [MAs(III)] , and arsenate [As(V)]. (iii) Heterologous expression of ArsK in an arsenic-hypersensitive Escherichia coli strain showed that ArsK was essential for resistance to As(III), Sb(III), Rox(III), and MAs(III) but not to As(V), dimethylarsenite [dimethyl-As(III)], or Cd(II). (iv) ArsK reduced the cellular accumulation of As(III), Sb(III), Rox(III), and MAs(III) but not to As(V) or dimethyl-As(III). (v) A putative arsenic regulator gene arsR2 was cotranscribed with arsK , and (vi) ArsR2 interacted with the arsR2-arsK promoter region without metalloids and was derepressed by As(III), Sb(III), Rox(III), and MAs(III), indicating the repression activity of ArsR2 for the transcription of arsK . These results demonstrate that ArsK is a novel arsenic efflux protein for As(III), Sb(III), Rox(III), and MAs(III) and is regulated by ArsR2. Bacteria use the arsR2-arsK operon for resistance to several trivalent arsenicals or antimonials. IMPORTANCE The metalloid extrusion systems are very important bacterial resistance mechanisms. Each of the previously reported ArsB, Acr3, ArsP, ArsJ, and MSF1 transport proteins conferred only inorganic or organic arsenic/antimony resistance. In contrast, ArsK confers resistance to several inorganic and organic trivalent arsenicals and antimonials. The identification of the novel efflux transporter ArsK enriches our understanding of bacterial resistance to trivalent arsenite [As(III)], antimonite [Sb(III)] , trivalent roxarsone [Rox(III)], and methylarsenite [MAs(III)] .
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...