GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology  (2)
  • 1
    In: Molecular Ecology, Wiley, Vol. 32, No. 23 ( 2023-12), p. 6260-6277
    Abstract: The green seaweed Ulva is a model system to study seaweed–bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed‐associated bacteria across the Atlantic–Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva ‐associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5–8 PSU, known as the transition zone from freshwater to marine conditions). Low‐salinity communities especially contained high relative abundances of Luteolibacter , Cyanobium , Pirellula , Lacihabitans and an uncultured Spirosomaceae, whereas high‐salinity communities were predominantly enriched in Litorimonas , Leucothrix , Sulfurovum , Algibacter and Dokdonia . We identified a small taxonomic core community (consisting of Paracoccus , Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic–Baltic Sea gradient. Our results contradict earlier statements that Ulva ‐associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.
    Type of Medium: Online Resource
    ISSN: 0962-1083 , 1365-294X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020749-9
    detail.hit.zdb_id: 1126687-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Phycology, Wiley, Vol. 55, No. 1 ( 2019-02), p. 25-36
    Abstract: As one of the most abundant and ubiquitous representatives of marine and brackish coastal macrophytobenthos communities, the genus Ulva is not only an important primary producer but also of ecological and morphogenetic interest to many scientists. Ulva mutabilis became an important model organism to study morphogenesis and mutualistic interactions of macroalgae and microorganisms. Here, we report that our collections of Ulva compressa Linnaeus (1753) from Germany are conspecific with the type strains of the model organism U. mutabilis Føyn (1958), which were originally collected at Olhão on the south coast of Portugal and have from that time on been maintained in culture as gametophytic and parthenogenetic lab strains. Different approaches were used to test conspecificity: (i) comparisons of vegetative and reproductive features of cultured material of U. mutabilis and German U. compressa demonstrated a shared morphological pattern; (ii) gametes of U. compressa and U. mutabilis successfully mated and developed into fertile sporophytic first‐generation offspring; (iii) molecular phylogenetics and species delimitation analyses based on the Generalized Mixed Yule‐Coalescent method showed that U. mutabilis isolates (sl‐G[mt+]) and (wt‐G[mt‐] ) and U. compressa belong to a unique Molecular Operational Taxonomic Unit. According to these findings, there is sufficient evidence that U. mutabilis and U. compressa should be regarded as conspecific.
    Type of Medium: Online Resource
    ISSN: 0022-3646 , 1529-8817
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 281226-5
    detail.hit.zdb_id: 1478748-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...