GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Proteins: Structure, Function, and Bioinformatics Vol. 83, No. 12 ( 2015-12), p. 2240-2250
    In: Proteins: Structure, Function, and Bioinformatics, Wiley, Vol. 83, No. 12 ( 2015-12), p. 2240-2250
    Abstract: R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all‐atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53‐DBD conformation: (i) wild‐type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side‐chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge‐ and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc‐binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. Proteins 2015; 83:2240–2250. © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0887-3585 , 1097-0134
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1475032-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 9 ( 2011-03), p. 3590-3595
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 9 ( 2011-03), p. 3590-3595
    Abstract: RNA often folds hierarchically, so that its sequence defines its secondary structure (helical base-paired regions connected by single-stranded junctions), which subsequently defines its tertiary fold. To preserve base-pairing and chain connectivity, the three-dimensional conformations that RNA can explore are strongly confined compared to when secondary structure constraints are not enforced. Using three examples, we studied how secondary structure confines and dictates an RNA’s preferred conformations. We made use of Macromolecular Conformations by SYMbolic programming (MC-Sym) fragment assembly to generate RNA conformations constrained by secondary structure. Then, to understand the correlations between different helix placements and orientations, we robustly clustered all RNA conformations by employing unique methods to remove outliers and estimate the best number of conformational clusters. We observed that the preferred conformation (as judged by largest cluster size) for each type of RNA junction molecule tested is consistent with its biological function. Further, the improved quality of models in our pruned datasets facilitates subsequent discrimination using scoring functions based either on statistical analysis (knowledge based) or experimental data.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 28 ( 2019-07-09), p. 13958-13963
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 28 ( 2019-07-09), p. 13958-13963
    Abstract: In the disease familial amyloidosis, Finnish type (FAF), also known as AGel amyloidosis (AGel), the mechanism by which point mutations in the calcium-regulated actin-severing protein gelsolin lead to furin cleavage is not understood in the intact protein. Here, we provide a structural and biochemical characterization of the FAF variants. X-ray crystallography structures of the FAF mutant gelsolins demonstrate that the mutations do not significantly disrupt the calcium-free conformations of gelsolin. Small-angle X-ray–scattering (SAXS) studies indicate that the FAF calcium-binding site mutants are slower to activate, whereas G167R is as efficient as the wild type. Actin-regulating studies of the gelsolins at the furin cleavage pH (6.5) show that the mutant gelsolins are functional, suggesting that they also adopt relatively normal active conformations. Deletion of gelsolin domains leads to sensitization to furin cleavage, and nanobody-binding protects against furin cleavage. These data indicate instability in the second domain of gelsolin (G2), since loss or gain of G2-stabilizing interactions impacts the efficiency of cleavage by furin. To demonstrate this principle, we engineered non-FAF mutations in G3 that disrupt the G2-G3 interface in the calcium-activated structure. These mutants led to increased furin cleavage. We carried out molecular dynamics (MD) simulations on the FAF and non-FAF mutant G2-G3 fragments of gelsolin. All mutants showed an increase in the distance between the center of masses of the 2 domains (G2 and G3). Since G3 covers the furin cleavage site on G2 in calcium-activated gelsolin, this suggests that destabilization of this interface is a critical step in cleavage.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 36 ( 2008-09-09), p. 13356-13361
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 36 ( 2008-09-09), p. 13356-13361
    Abstract: Protein α-helices are ubiquitous secondary structural elements, seldom considered to be stable without tertiary contacts. However, amino acid sequences in proteins that are based on alternating repeats of four glutamic acid (E) residues and four positively charged residues, a combination of arginine (R) and lysine (K), have been shown to form stable α-helices in a few proteins, in the absence of tertiary interactions. Here, we find that this ER/K motif is more prevalent than previously reported, being represented in proteins of diverse function from archaea to humans. By using molecular dynamics (MD) simulations, we characterize a dynamic pattern of side-chain interactions that extends along the backbone of ER/K α-helices. A simplified model predicts that side-chain interactions alone contribute substantial bending rigidity (0.5 pN/nm) to ER/K α-helices. Results of small-angle x-ray scattering (SAXS) and single-molecule optical-trap analyses are consistent with the high bending rigidity predicted by our model. Thus, the ER/K α-helix is an isolated secondary structural element that can efficiently span long distances in proteins, making it a promising tool in designing synthetic proteins. We propose that the significant rigidity of the ER/K α-helix can help regulate protein function, as a force transducer between protein subdomains.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 8 ( 2012-02-21), p. 2890-2895
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 8 ( 2012-02-21), p. 2890-2895
    Abstract: We develop a unique algorithm implemented in the program MOSAICS (Methodologies for Optimization and Sampling in Computational Studies) that is capable of nanoscale modeling without compromising the resolution of interest. This is achieved by modeling with customizable hierarchical degrees of freedom, thereby circumventing major limitations of conventional molecular modeling. With the emergence of RNA-based nanotechnology, large RNAs in all-atom representation are used here to benchmark our algorithm. Our method locates all favorable structural states of a model RNA of significant complexity while improving sampling accuracy and increasing speed many fold over existing all-atom RNA modeling methods. We also modeled the effects of sequence mutations on the structural building blocks of tRNA-based nanotechnology. With its flexibility in choosing arbitrary degrees of freedom as well as in allowing different all-atom energy functions, MOSAICS is an ideal tool to model and design biomolecules of the nanoscale.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2017
    In:  Nucleic Acids Research Vol. 45, No. 1 ( 2017-01-09), p. e5-e5
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 45, No. 1 ( 2017-01-09), p. e5-e5
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...