GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 5 ( 2009-02-03), p. 1506-1511
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 5 ( 2009-02-03), p. 1506-1511
    Kurzfassung: The CD5 lymphocyte surface receptor is a group B member of the ancient and highly conserved scavenger receptor cysteine-rich superfamily. CD5 is expressed on mature T and B1a cells, where it is known to modulate lymphocyte activation and/or differentiation processes. Recently, the interaction of a few group B SRCR members (CD6, Spα, and DMBT1) with conserved microbial structures has been reported. Protein binding assays presented herein indicate that the CD5 ectodomain binds to and aggregates fungal cells ( Schizosaccharomyces pombe , Candida albicans , and Cryptococcus neoformans ) but not to Gram-negative ( Escherichia coli ) or Gram-positive ( Staphylococcus aureus ) bacteria. Accordingly, the CD5 ectodomain binds to zymosan but not to purified bacterial cell wall constituents (LPS, lipotheicoic acid, or peptidoglycan), and such binding is specifically competed by β-glucan but not by mannan. The K d of the rshCD5/(1→3)-β- d -glucan phosphate interaction is 3.7 ± 0.2 nM as calculated from tryptophan fluorescence data analysis of free and bound rshCD5. Moreover, zymosan binds to membrane-bound CD5, and this induces both MAPK activation and cytokine release. In vivo validation of the fungal binding properties of the CD5 ectodomain is deduced from its protective effect in a mouse model of zymosan-induced septic shock-like syndrome. In conclusion, the present results indicate that the CD5 lymphocyte receptor may sense the presence of conserved fungal components [namely, (1→3)-β- d -glucans] and support the therapeutic potential of soluble CD5 forms in fungal sepsis.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2009
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 28 ( 2007-07-10), p. 11724-11729
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 28 ( 2007-07-10), p. 11724-11729
    Kurzfassung: CD6 is a lymphocyte receptor that belongs to the scavenger receptor cysteine-rich superfamily. Because some members of the scavenger receptor cysteine-rich superfamily act as pattern recognition receptors for microbial components, we studied whether CD6 shares this function. We produced a recombinant form of the ectodomain of CD6 (rsCD6), which was indistinguishable (in apparent molecular mass, antibody reactivity, and cell binding properties) from a circulating form of CD6 affinity-purified from human serum. rsCD6 bound to and aggregated several Gram-positive and -negative bacterial strains through the recognition of lipoteichoic acid and LPS, respectively. The K d of the LPS–rsCD6 interaction was 2.69 ± 0.32 × 10 −8 M, which is similar to that reported for the LPS–CD14 interaction. Further experiments showed that membrane CD6 also retains the LPS-binding ability, and it results in activation of the MAPK signaling cascade. In vivo experiments demonstrated that i.p. administration of rsCD6 before lethal LPS challenge significantly improved mice survival, and this was concomitant with reduced serum levels of the proinflammatory cytokines TNF-α, IL6, and IL-1β. In conclusion, our results illustrate the unprecedented bacterial binding properties of rsCD6 and support its therapeutic potential for the intervention of septic shock syndrome or other inflammatory diseases of infectious origin.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2007
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...