GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology  (248)
Material
Language
Subjects(RVK)
  • 1
    In: Nature, Springer Science and Business Media LLC
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 578, No. 7793 ( 2020-02-06), p. 129-136
    Abstract: Transcript alterations often result from somatic changes in cancer genomes 1 . Various forms of RNA alterations have been described in cancer, including overexpression 2 , altered splicing 3 and gene fusions 4 ; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) 5 . Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis , of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed ‘bridged’ fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 606, No. 7912 ( 2022-06-02), p. 64-69
    Abstract: Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry 1 . As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ − baryon and its antiparticle 2 $${\bar{{\Xi }}}^{+}$$ Ξ ¯ + , has enabled a direct determination of the weak-phase difference, ( ξ P  −  ξ S ) = (1.2 ± 3.4 ± 0.8) × 10 −2  rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods 3 . Finally, we provide an independent measurement of the recently debated Λ decay parameter α Λ (refs.  4,5 ). The $${\Lambda }\bar{{\Lambda }}$$ Λ Λ ¯ asymmetry is in agreement with and compatible in precision to the most precise previous measurement 4 .
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell, Elsevier BV, Vol. 153, No. 5 ( 2013-05), p. 1012-1024
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2004
    In:  Science Vol. 306, No. 5703 ( 2004-12-10), p. 1937-1940
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 306, No. 5703 ( 2004-12-10), p. 1937-1940
    Abstract: We report a draft sequence for the genome of the domesticated silkworm ( Bombyx mori ), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster . Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2004
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6604 ( 2022-07-22)
    Abstract: Rapid population growth, rising meat consumption, and the expanding use of crops for nonfood and nonfeed purposes increase the pressure on global food production. At the same time, the excessive use of nitrogen fertilizer to enhance agricultural production poses serious threats to both human health and the environment. To achieve the required yield increases and make agriculture more sustainable, intensified breeding and genetic engineering efforts are needed to obtain new crop varieties with higher photosynthetic capacity and improved nitrogen use efficiency (NUE). However, progress has been slow, largely due to the limited knowledge about regulator genes that potentially can coordinately optimize carbon assimilation and nitrogen utilization. RATIONALE Transcription factors control diverse biological processes by binding to the promoters (or intragenic regions) of target genes, and a number of transcription factors have been identified that control carbon fixation and nitrogen assimilation. A previous comparative analysis of maize and rice leaf transcriptomes and metabolomes revealed a set of 118 candidate transcription factors that may act as regulators of C 4 photosynthesis. We screened these transcription factors for their responsiveness to light and nitrogen supply in rice, and found that the gene Dehydration-Responsive Element-Binding Protein 1C ( OsDREB1C ), a member of the APETALA2/ethylene-responsive element binding factor (AP2/ERF) family, exhibits properties expected of a regulator that can simultaneously modulate photosynthesis and nitrogen utilization. RESULTS OsDREB1C expression is induced in rice by both light and low-nitrogen status. We generated overexpression lines ( OsDREB1C -OE) and knockout mutants ( OsDREB1C -KO) in rice, and conducted field trials in northern, southeastern, and southern China from 2018 to 2021. OsDREB1C -OE plants exhibited 41.3 to 68.3% higher yield than wild-type (WT) plants due to increased grain number per panicle, elevated grain weight, and enhanced harvest index. We observed that light-induced growth promotion of OsDREB1C -OE plants was accompanied by enhanced photosynthetic capacity and concomitant increases in photosynthetic assimilates. In addition, 15 N feeding experiments and field studies with different nitrogen fertilization regimes revealed that NUE was improved in OsDREB1C- OE plants due to elevated nitrogen uptake and transport activity. Moreover, OsDREB1C overexpression led to more efficient carbon and nitrogen allocation from source to sink, thus boosting grain yield, particularly under low-nitrogen conditions. Additionally, the OsDREB1C -OE plants flowered 13 to 19 days earlier and accumulated higher biomass at the heading stage than WT plants under long-day conditions. OsDREB1C is localized in the nucleus and the cytosol and functions as a transcriptional activator that directly binds to cis elements in the DNA, including dehydration-responsive element (DRE)/C repeat (CRT), GCC, and G boxes. Chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses identified a total of 9735 putative OsDREB1C-binding sites at the genome-wide level. We discovered that five genes targeted by OsDREB1C [ ribulose-l,5-bisphosphate carboxylase/oxygenase small subunit 3 ( OsRBCS3 ), nitrate reductase 2 ( OsNR2 ), nitrate transporter 2.4 ( OsNRT2.4 ), nitrate transporter 1.1B ( OsNRT1.1B ), and flowering locus T-like 1 ( OsFTL1 )] are closely associated with photosynthesis, nitrogen utilization, and flowering, the key traits altered by OsDREB1C overexpression. ChIP-quantitative polymerase chain reaction (ChIP-qPCR) and DNA affinity purification sequencing (DAP-seq) assays confirmed that OsDREB1C activates the transcription of these genes by binding to the promoter of OsRBCS3 and to exons of OsNR2 , OsNRT2.4 , OsNRT1.1B , and OsFTL1 . By showing that biomass and yield increases can also be achieved by OsDREB1C overexpression in wheat and Arabidopsis , we have demonstrated that the mode of action and the biological function of the transcription factor are evolutionarily conserved. CONCLUSION Overexpression of OsDREB1C not only boosts grain yields but also confers higher NUE and early flowering. Our work demonstrates that by genetically modulating the expression of a single transcriptional regulator gene, substantial yield increases can be achieved while the growth duration of the crop is shortened. The existing natural allelic variation in OsDREB1C , the highly conserved function of the transcription factor in seed plants, and the ease with which its expression can be altered by genetic engineering suggest that this gene could be the target of future crop improvement strategies toward more efficient and more sustainable food production. OsDREB1C coordinates yield and growth duration. OsDREB1C was identified by its responsiveness to light and low nitrogen in a screen of 118 transcription factors related to C 4 photosynthesis. Transcriptional activation of multiple downstream target genes by OsDREB1C confers enhanced photosynthesis, improved nitrogen utilization, and early flowering. Together, the activated genes cause substantial yield increases in rice and wheat.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Cell Biology, Rockefeller University Press, Vol. 218, No. 2 ( 2019-02-04), p. 580-597
    Abstract: Amino acid catabolism is frequently executed in mitochondria; however, it is largely unknown how aberrant amino acid metabolism affects mitochondria. Here we report the requirement for mitochondrial saccharopine degradation in mitochondrial homeostasis and animal development. In Caenorhbditis elegans, mutations in the saccharopine dehydrogenase (SDH) domain of the bi-functional enzyme α-aminoadipic semialdehyde synthase AASS-1 greatly elevate the lysine catabolic intermediate saccharopine, which causes mitochondrial damage by disrupting mitochondrial dynamics, leading to reduced adult animal growth. In mice, failure of mitochondrial saccharopine oxidation causes lethal mitochondrial damage in the liver, leading to postnatal developmental retardation and death. Importantly, genetic inactivation of genes that raise the mitochondrial saccharopine precursors lysine and α-ketoglutarate strongly suppresses SDH mutation-induced saccharopine accumulation and mitochondrial abnormalities in C. elegans. Thus, adequate saccharopine catabolism is essential for mitochondrial homeostasis. Our study provides mechanistic and therapeutic insights for understanding and treating hyperlysinemia II (saccharopinuria), an aminoacidopathy with severe developmental defects.
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2019
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 50, No. 10 ( 2022-06-10), p. 5599-5616
    Abstract: Maternal-to-zygotic transition (MZT) is the first and key step in the control of animal development and intimately related to changes in chromatin structure and histone modifications. H2AK119ub1, an important epigenetic modification in regulating chromatin configuration and function, is primarily catalyzed by PRC1 and contributes to resistance to transcriptional reprogramming in mouse embryos. In this study, the genome-wide dynamic distribution of H2AK119ub1 during MZT in mice was investigated using chromosome immunoprecipitation and sequencing. The results indicated that H2AK119ub1 accumulated in fully grown oocytes and was enriched at the TSSs of maternal genes, but was promptly declined after meiotic resumption at genome-wide including the TSSs of early zygotic genes, by a previously unidentified mechanism. Genetic evidences indicated that ubiquitin-specific peptidase 16 (USP16) is the major deubiquitinase for H2AK119ub1 in mouse oocytes. Conditional knockout of Usp16 in oocytes did not impair their survival, growth, or meiotic maturation. However, oocytes lacking USP16 have defects when undergoing zygotic genome activation or gaining developmental competence after fertilization, potentially associated with high levels of maternal H2AK119ub1 deposition on the zygotic genomes. Taken together, H2AK119ub1 level is declined during oocyte maturation by an USP16-dependent mechanism, which ensures zygotic genome reprogramming and transcriptional activation of essential early zygotic genes.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2024
    In:  Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease Vol. 1870, No. 4 ( 2024-04), p. 167114-
    In: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Elsevier BV, Vol. 1870, No. 4 ( 2024-04), p. 167114-
    Type of Medium: Online Resource
    ISSN: 0925-4439
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 2209528-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 46 ( 2019-11-12), p. 23264-23273
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 46 ( 2019-11-12), p. 23264-23273
    Abstract: Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided “proof of concept” for the potential application of metabolic treatment in clinical practice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...