GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology  (1)
Material
Language
Years
Subjects(RVK)
  • Biology  (1)
RVK
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2009
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 297, No. 4 ( 2009-10), p. H1217-H1224
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 297, No. 4 ( 2009-10), p. H1217-H1224
    Abstract: In traditional Chinese medicine, tanshinone IIA is a lipid-soluble component of Danshen that has been widely used for various cardiovascular and cerebrovascular disorders, including neonatal asphyxia. Despite promising effects, little is known regarding the hemodynamic effects of tanshinone IIA in newborn subjects. To examine the dose-response effects of sodium tanshinone IIA sulfonate (STS) on systemic and regional hemodynamics and oxygen transport, 12 newborn piglets were anesthetized and acutely instrumented for the placement of femoral arterial and venous, pulmonary arterial catheters to measure mean arterial, central venous, and pulmonary arterial pressures, respectively. The blood flow at the common carotid, renal, pulmonary, and superior mesenteric (SMA) arteries were continuously monitored after treating the piglets with either STS (0.1–30 mg/kg iv) or saline treatment ( n = 6/group). To further delineate the underlying mechanisms for vasorelaxant effects of STS, in vitro vascular myography was carried out to compare its effect on rat mesenteric and carotid arteries ( n = 4–5/group). STS dose-dependently increased the SMA blood flow and the corresponding oxygen delivery with no significant effect on systemic and pulmonary, carotid and renal hemodynamic parameters. In vitro studies also demonstrated that STS selectively dilated rat mesenteric but not carotid arteries. Vasodilation in mesenteric arteries was inhibited by apamin and TRAM-34 (calcium-activated potassium channel inhibitors) but not by meclofenamate (cyclooxygenase inhibitor) or N-nitro-l-arginine methyl ester hydrochloride (nitric oxide synthase inhibitor). In summary, without significant hemodynamic effects on newborn piglets, intravenous infusion of STS selectively increased mesenteric perfusion in a dose-dependent manner, possibly via an endothelium-derived hyperpolarizing factor vasodilating pathway.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2009
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...