GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Protein Science, Wiley, Vol. 18, No. 12 ( 2009-12), p. 2480-2491
    Abstract: Rhodaneses/sulfurtransferases are ubiquitous enzymes that catalyze the transfer of sulfane sulfur from a donor molecule to a thiophilic acceptor via an active site cysteine that is modified to a persulfide during the reaction. Here, we present the first crystal structure of a triple‐domain rhodanese‐like protein, namely YnjE from Escherichia coli , in two states where its active site cysteine is either unmodified or present as a persulfide. Compared to well‐characterized tandem domain rhodaneses, which are composed of one inactive and one active domain, YnjE contains an extra N‐terminal inactive rhodanese‐like domain. Phylogenetic analysis reveals that YnjE triple‐domain homologs can be found in a variety of other γ‐proteobacteria, in addition, some single‐, tandem‐, four and even six‐domain variants exist. All YnjE rhodaneses are characterized by a highly conserved active site loop (CGTGWR) and evolved independently from other rhodaneses, thus forming their own subfamily. On the basis of structural comparisons with other rhodaneses and kinetic studies, YnjE, which is more similar to thiosulfate:cyanide sulfurtransferases than to 3‐mercaptopyruvate:cyanide sulfurtransferases, has a different substrate specificity that depends not only on the composition of the active site loop with the catalytic cysteine at the first position but also on the surrounding residues. In vitro YnjE can be efficiently persulfurated by the cysteine desulfurase IscS. The catalytic site is located within an elongated cleft, formed by the central and C‐terminal domain and is lined by bulky hydrophobic residues with the catalytic active cysteine largely shielded from the solvent.
    Type of Medium: Online Resource
    ISSN: 0961-8368 , 1469-896X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 2000025-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 18 ( 2006-05-02), p. 6829-6834
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 18 ( 2006-05-02), p. 6829-6834
    Abstract: The first step in molybdenum cofactor biosynthesis, the conversion of 5′-GTP to precursor Z, an oxygen-sensitive tetrahydropyranopterin is catalyzed by the S -adenosylmethionine (SAM)-dependent enzyme MoaA and the accessory protein MoaC. This reaction involves the radical-initiated intramolecular rearrangement of the guanine C8 atom. MoaA harbors an N-terminal [4Fe–4S] cluster, which is involved in the reductive cleavage of SAM and generates a 5′-deoxyadenosyl radical (5′-dA • ), and a C-terminal [4Fe–4S] cluster presumably involved in substrate binding and/or activation. Biochemical studies identified residues involved in 5′-GTP binding and the determinants of nucleotide specificity. The crystal structure of MoaA in complex with 5′-GTP confirms the biochemical data and provides valuable insights into the subsequent radical reaction. MoaA binds 5′-GTP with high affinity and interacts through its C-terminal [4Fe–4S] cluster with the guanine N1 and N2 atoms, in a yet uncharacterized binding mode. The tightly anchored triphosphate moiety prevents the escape of radical intermediates. This structure also visualizes the l -Met and 5′-dA cleavage products of SAM. Rotation of the 5′-dA ribose and/or conformational changes of the guanosine are proposed to bring the 5′-deoxyadenosyl radical into close proximity of either the ribose C2′ and C3′ or the guanine C8 carbon atoms leading to hydrogen abstraction.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2013
    In:  Biochemistry Vol. 52, No. 7 ( 2013-02-19), p. 1134-1136
    In: Biochemistry, American Chemical Society (ACS), Vol. 52, No. 7 ( 2013-02-19), p. 1134-1136
    Type of Medium: Online Resource
    ISSN: 0006-2960 , 1520-4995
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2013
    detail.hit.zdb_id: 1472258-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biochemistry, American Chemical Society (ACS), Vol. 47, No. 24 ( 2008-06-01), p. 6479-6489
    Type of Medium: Online Resource
    ISSN: 0006-2960 , 1520-4995
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2008
    detail.hit.zdb_id: 1472258-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  FEBS Letters Vol. 589, No. 19PartA ( 2015-09-14), p. 2578-2589
    In: FEBS Letters, Wiley, Vol. 589, No. 19PartA ( 2015-09-14), p. 2578-2589
    Abstract: p97 (also known as Cdc48, Ter94, and VCP) is an essential, abundant and highly conserved ATPase driving the turnover of ubiquitylated proteins in eukaryotes. Even though p97 is involved in highly diverse cellular pathways and processes, it exhibits hardly any substrate specificity on its own. Instead, it relies on a large number of regulatory cofactors controlling substrate specificity and turnover. The complexity as well as temporal and spatial regulation of the interactions between p97 and its cofactors is only beginning to be understood at the molecular level. Here, we give an overview on the structural framework of p97 interactions with its cofactors, the emerging principles underlying the assembly of complexes with different cofactors, and the pathogenic effects of disease‐associated p97 mutations on cofactor binding.
    Type of Medium: Online Resource
    ISSN: 0014-5793 , 1873-3468
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1460391-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 35 ( 2004-08-31), p. 12870-12875
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 35 ( 2004-08-31), p. 12870-12875
    Abstract: The MoaA and MoaC proteins catalyze the first step during molybdenum cofactor biosynthesis, the conversion of a guanosine derivative to precursor Z. MoaA belongs to the S -adenosylmethionine (SAM)-dependent radical enzyme superfamily, members of which catalyze the formation of protein and/or substrate radicals by reductive cleavage of SAM by a [4Fe–4S] cluster. A defined in vitro system is described, which generates precursor Z and led to the identification of 5′-GTP as the substrate. The structures of MoaA in the apo-state (2.8 Å) and in complex with SAM (2.2 Å) provide valuable insights into its mechanism and help to define the defects caused by mutations in the human ortholog of MoaA that lead to molybdenum cofactor deficiency, a usually fatal disease accompanied by severe neurological symptoms. The central core of each subunit of the MoaA dimer is an incomplete triosephosphate isomerase barrel formed by the N-terminal part of the protein, which contains the [4Fe–4S] cluster typical for SAM-dependent radical enzymes. SAM is the fourth ligand to the cluster and binds to its unique Fe as an N/O chelate. The lateral opening of the incomplete triosephosphate isomerase barrel is covered by the C-terminal part of the protein containing an additional [4Fe–4S] cluster, which is unique to MoaA proteins. Both FeS clusters are separated by ≈17 Å, with a large active site pocket between. The noncysteinyl-ligated unique Fe site of the C-terminal [4Fe–4S] cluster is proposed to be involved in the binding and activation of 5′-GTP.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...