GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 371, No. 1694 ( 2016-05-19), p. 20150269-
    Abstract: Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2016
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 1 ( 2014-01-07), p. 308-313
    Abstract: Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecology, Wiley, Vol. 98, No. 10 ( 2017-10), p. 2561-2573
    Abstract: The nearly universal positive relationship between the distribution and abundance of species has been explained by several hypotheses but hitherto no consensus has been reached. Here, we used monitoring data of 105 phytophagous true bug species (Heteroptera) from 150 grassland sites over six years to test how (1) range position, (2) resource use, (3) resource availability, (4) density‐dependent habitat selection, (5) metapopulation dynamics, and (6) habitat dispersal affect the distribution–abundance relationship. For the use in a confirmatory path analysis, we constructed causal pathways representing the hypothesized relationships and tested them separately and in a combined analysis. Our results show that the distribution–abundance relationship in phytophagous true bugs is driven by habitat‐availability. An increasing local density of the host‐plants increases the distribution of the species in the landscape, which in turn increases their local abundance. Thereby habitat availability facilitates dispersal success. We conclude that local abundance of herbivores facing habitat destruction could decline owing to a decrease in population dynamics between sites at the landscape scale. Finally, our results underline the potential of confirmatory path analysis for testing competing hypotheses.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature, Springer Science and Business Media LLC, Vol. 536, No. 7617 ( 2016-8), p. 456-459
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Animal Ecology, Wiley, Vol. 93, No. 5 ( 2024-05), p. 540-553
    Abstract: Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long‐term impact of global‐change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human‐driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human‐induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 597, No. 7874 ( 2021-09-02), p. 77-81
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Animal Ecology, Wiley, Vol. 84, No. 1 ( 2015-01), p. 143-154
    Abstract: As a rule, communities consist of few abundant and many rare species, which is reflected in the characteristic shape of species abundance distributions (SADs). The processes that shape these SADs have been a longstanding problem for ecological research. Although many studies found strong negative effects of increasing land‐use intensity on diversity, few reports consider land‐use effects on SADs. Arthropods (insects and spiders) were sampled on 142 grassland plots in three regions in Germany, which were managed with different modes (mowing, fertilization and/or grazing) and intensities of land use. We analysed the effect of land use on three parameters characterizing the shape of SADs: abundance decay rate (the steepness of the rank abundance curve, represented by the niche‐preemption model parameter), dominance (Berger‐Parker dominance) and rarity (Fisher's alpha). Furthermore, we tested the core‐satellite hypothesis by comparing the species’ rank within the SAD to their distribution over the land‐use gradient. When data on Araneae, Cicadina, Coleoptera, Heteroptera and Orthoptera were combined, abundance decay rate increased with combined land‐use intensity (including all modes). Among the single land‐use modes, increasing fertilization and grazing intensity increased the decay rate of all taxa, while increasing mowing frequency significantly affected the decay rate only in interaction with fertilization. Results of single taxa differed in their details, but all significant interaction effects included fertilization intensity. Dominance generally increased with increasing fertilization and rarity decreased with increasing grazing or mowing intensity, despite small differences among taxa and regions. The majority of species found on 〈 10% of the plots per region were generally rare ( 〈 10 individuals), which is in accordance with the core‐satellite hypothesis. We found significant differences in the rarity and dominance of species between plots of low and high intensity for all three land‐use modes and for the combined land‐use intensity. We conclude that effects of land‐use intensity on SAD s lead to a stronger dominance of the most abundant species. Furthermore, species which have restricted distributions are more likely to also be rare species in the local SAD and therefore are at high risk of being lost under intensive land use.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, Springer Science and Business Media LLC, Vol. 540, No. 7632 ( 2016-12), p. 266-269
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Animal Ecology, Wiley, Vol. 85, No. 1 ( 2016-01), p. 213-226
    Abstract: Arthropod communities in water‐filled tree holes may be sensitive to impacts of forest management, for example via changes in environmental conditions such as resource input. We hypothesized that increasing forest management intensity (For MI ) negatively affects arthropod abundance and richness and shifts community composition and trophic structure of tree hole communities. We predicted that this shift is caused by reduced habitat and resource availability at the forest stand scale as well as reduced tree hole size, detritus amount and changed water chemistry at the tree holes scale. We mapped 910 water‐filled tree holes in two regions in Germany and studied 199 tree hole inhabiting arthropod communities. We found that increasing For MI indeed significantly reduced arthropod abundance and richness in water‐filled tree holes. The most important indirect effects of management intensity on tree hole community structure were the reduced amounts of detritus for the tree hole inhabiting organisms and changed water chemistry at the tree hole scale, both of which seem to act as a habitat filter. Although habitat availability at the forest stand scale decreased with increasing management intensity, this unexpectedly increased local arthropod abundance in individual tree holes. However, regional species richness in tree holes significantly decreased with increasing management intensity, most likely due to decreased habitat diversity. We did not find that the management‐driven increase in plant diversity at the forest stand scale affected communities of individual tree holes, for example via resource availability for adults. Our results suggest that management of temperate forests has to target a number of factors at different scales to conserve diverse arthropod communities in water‐filled tree holes.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Animal Ecology, Wiley, Vol. 92, No. 5 ( 2023-05), p. 965-978
    Abstract: The patterns of successional change of decomposer communities is unique in that resource availability predictably decreases as decomposition proceeds. Saproxylic (i.e. deadwood‐dependent) beetles are a highly diverse and functionally important decomposer group, and their community composition is affected by both deadwood characteristics and other environmental factors. Understanding how communities change with faunal succession through the decomposition process is important as this process influences terrestrial carbon dynamics. Here, we evaluate how beta‐diversity of saproxylic beetle communities change with succession, as well as the effects of different major drivers of beta‐diversity, such as deadwood tree species, spatial distance between locations, climate and forest structure. We studied spatial beta‐diversity (i.e. dissimilarity of species composition between deadwood logs in the same year) of saproxylic beetle communities over 8 years of wood decomposition. Our study included 379 experimental deadwood logs comprising 13 different tree species in 30 forest stands in Germany. We hypothesized that the effects of tree species dissimilarity, measured by phylogenetic distance, and climate on beta‐diversity decrease over time, while the effects of spatial distance between logs and forest structure increase. Observed beta‐diversity of saproxylic beetle communities increased over time, whereas standardized effects sizes (SES; based on null models) of beta‐diversity decreased indicating higher beta‐diversity than expected during early years. Beta‐diversity increased with increasing phylogenetic distance between tree species and spatial distance among regions, and to a lesser extent with spatial distance within regions and differences in climate and forest structure. Whereas effects of space, climate and forest structure were constant over time, the effect of phylogenetic distance decreased. Our results show that the strength of the different drivers of saproxylic beetle community beta‐diversity changes along deadwood succession. Beta‐diversity of early decay communities was strongly associated with differences among tree species. Although this effect decreased over time, beta‐diversity remained high throughout succession. Possible explanations for this pattern include differences in decomposition rates and fungal communities between logs or the priority effect of early successional communities. Our results suggest that saproxylic beetle diversity can be enhanced by promoting forests with diverse tree communities and structures.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...