GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 361, No. 6399 ( 2018-07-20), p. 278-281
    Abstract: Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H 2 SO 4 ) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H 2 SO 4 ) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H 2 SO 4 –dimethylamine (DMA)–water (H 2 O) nucleation, including sulfuric acid dimers and H 2 SO 4 -DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...