GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 1989
    In:  Science Vol. 244, No. 4909 ( 1989-06-09), p. 1169-1174
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 244, No. 4909 ( 1989-06-09), p. 1169-1174
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 1989
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microvascular Research, Elsevier BV, Vol. 32, No. 2 ( 1986-9), p. 230-243
    Type of Medium: Online Resource
    ISSN: 0026-2862
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1986
    detail.hit.zdb_id: 1471172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microvascular Research, Elsevier BV, Vol. 33, No. 3 ( 1987-5), p. 327-352
    Type of Medium: Online Resource
    ISSN: 0026-2862
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1987
    detail.hit.zdb_id: 1471172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2016
    In:  Science Vol. 352, No. 6287 ( 2016-05-13), p. 809-812
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 352, No. 6287 ( 2016-05-13), p. 809-812
    Abstract: How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: The Hayabusa2 spacecraft made two landings on the asteroid (162173) Ryugu in 2019, during which it collected samples of the surface material. Those samples were delivered to Earth in December 2020. The colors, shapes, and morphologies of the returned samples are consistent with those observed on Ryugu by Hayabusa2, indicating that they are representative of the asteroid. Laboratory analysis of the samples can determine the chemical composition of Ryugu and provide information on its formation and history. RATIONALE We used laboratory analysis to inform the following questions: (i) What are the elemental abundances of Ryugu? (ii) What are the isotopic compositions of Ryugu? (iii) Does Ryugu consist of primary materials produced in the disk from which the Solar System formed or of secondary materials produced in the asteroid or on a parent asteroid? (iv) When were Ryugu’s constituent materials formed? (v) What, if any, relationship does Ryugu have with meteorites? RESULTS We quantified the abundances of 66 elements in the Ryugu samples: H, Li, Be, C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th, and U. There is a slight variation in chemical compositions between samples from the first and second touchdown sites, but the variations could be due to heterogeneity among the samples that were analyzed. The Cr-Ti isotopes and abundance of volatile elements are similar to those of carbonaceous meteorites in the CI (Ivuna-like) chondrite group. The Ryugu samples consist of the minerals magnetite, breunnerite, dolomite, and pyrrhotite as grains embedded in a matrix composed of serpentine and saponite. This mineral assemblage and the texture are also similar to those of CI meteorites. Anhydrous silicates are almost absent, which indicates extensive liquid water–rock reactions (aqueous alteration) in the material. We conclude that the samples mainly consist of secondary materials that were formed by aqueous alteration in a parent body, from which Ryugu later formed. The oxygen isotopes in the bulk Ryugu samples are also similar to those in CI chondrites. We used oxygen isotope thermometry to determine the temperature at which the dolomite and magnetite precipitated from an aqueous solution, which we found to be 37° ± 10°C. The 53 Mn- 53 Cr isotopes date the aqueous alteration at 5.2 − 0.7 + 0.8 million (statistical) or 5.2 − 2.1 + 1.6 million (systematic) years after the birth of the Solar System. Phyllosilicate minerals are the main host of water in the Ryugu samples. The amount of structural water in Ryugu is similar to that in CI chondrites, but interlayer water is largely absent in Ryugu, which suggests a loss of interlayer water to space. The abundance of structural water and results from dehydration experiments indicate that the Ryugu samples remained below ~100°C from the time of aqueous alteration until the present. We ascribe the removal of interlayer water to a combination of impact heating, solar heating, solar wind irradiation, and long-term exposure to the ultrahigh vacuum of space. The loss of interlayer water from phyllosilicates could be responsible for the comet-like activity of some carbonaceous asteroids and the ejection of solid material from the surface of asteroid Bennu. CONCLUSION The Ryugu samples are most similar to CI chondrite meteorites but are more chemically pristine. The chemical composition of the Ryugu samples is a closer match to the Sun’s photosphere than to the composition of any other natural samples studied in laboratories. CI chondrites appear to have been modified on Earth or during atmospheric entry. Such modification of CI chondrites could have included the alteration of the structures of organics and phyllosilicates, the adsorption of terrestrial water, and the formation of sulfates and ferrihydrites. Those issues do not affect the Ryugu samples. Those modifications might have changed the albedo, porosity, and density of the CI chondrites, causing the observed differences between CI meteorites, Hayabusa2 measurements of Ryugu’s surface, and the Ryugu samples returned to Earth. Representative petrography of a Ryugu sample, designated C0002-C1001. Colors indicate elemental abundances determined from x-ray spectroscopy. Lines of iron, sulfur, and calcium are shown as red, green, and blue (RGB) color channels in that order. Combinations of these elements are assigned to specific minerals, as indicated in the legend. All visible minerals were formed by aqueous alteration on Ryugu’s parent body.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 23 ( 2021-06-08)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 23 ( 2021-06-08)
    Abstract: Globally distributed kimberlites with broadly chondritic initial 143 Nd- 176 Hf isotopic systematics may be derived from a chemically homogenous, relatively primitive mantle source that remained isolated from the convecting mantle for much of the Earth’s history. To assess whether this putative reservoir may have preserved remnants of an early Earth process, we report 182 W/ 184 W and 142 Nd/ 144 Nd data for “primitive” kimberlites from 10 localities worldwide, ranging in age from 1,153 to 89 Ma. Most are characterized by homogeneous μ 182 W and μ 142 Nd values averaging −5.9 ± 3.6 ppm (2SD, n = 13) and +2.7 ± 2.9 ppm (2SD, n = 6), respectively. The remarkably uniform yet modestly negative μ 182 W values, coupled with chondritic to slightly suprachondritic initial 143 Nd/ 144 Nd and 176 Hf/ 177 Hf ratios over a span of nearly 1,000 Mya, provides permissive evidence that these kimberlites were derived from one or more long-lived, early formed mantle reservoirs. Possible causes for negative μ 182 W values among these kimberlites include the transfer of W with low μ 182 W from the core to the mantle source reservoir(s), creation of the source reservoir(s) as a result of early silicate fractionation, or an overabundance of late-accreted materials in the source reservoir(s). By contrast, two younger kimberlites emplaced at 72 and 52 Ma and characterized by distinctly subchondritic initial 176 Hf/ 177 Hf and 143 Nd/ 144 Nd have μ 182 W values consistent with the modern upper mantle. These isotopic compositions may reflect contamination of the ancient kimberlite source by recycled crustal components with μ 182 W ≥ 0.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    University of Chicago Press ; 1975
    In:  The Quarterly Review of Biology Vol. 50, No. 2 ( 1975-06), p. 229-229
    In: The Quarterly Review of Biology, University of Chicago Press, Vol. 50, No. 2 ( 1975-06), p. 229-229
    Type of Medium: Online Resource
    ISSN: 0033-5770 , 1539-7718
    RVK:
    Language: English
    Publisher: University of Chicago Press
    Publication Date: 1975
    detail.hit.zdb_id: 2048222-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2009
    In:  Science Vol. 325, No. 5938 ( 2009-07-17), p. 267-267
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 325, No. 5938 ( 2009-07-17), p. 267-267
    Abstract: Andreasen and Sharma raise concerns about the neodymium-142 data and age that we reported for rocks from the Nuvvuagittuq greenstone belt in Quebec, Canada. We agree that the issue of accurate mass fractionation correction is important, but stand by our discussion of this issue in our original report and our conclusion that the variation in 142 Nd/ 144 Nd ratios reflects the decay of 146 Sm caused by Sm-Nd fractionation within 300 million years of Earth’s formation.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2002
    In:  Science Vol. 296, No. 5567 ( 2002-04-19), p. 475-477
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 296, No. 5567 ( 2002-04-19), p. 475-477
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2002
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6330 ( 2017-03-17), p. 1199-1202
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6330 ( 2017-03-17), p. 1199-1202
    Abstract: Geologic processing of Earth’s surface has removed most of the evidence concerning the nature of Earth’s first crust. One region of ancient crust is the Hudson Bay terrane of northeastern Canada, which is mainly composed of Neoarchean felsic crust and forms the nucleus of the Northeastern Superior Province. New data show these ~2.7-billion-year-old rocks to be the youngest to yield variability in neodymium-142 ( 142 Nd), the decay product of short-lived samarium-146 ( 146 Sm). Combined 146-147 Sm- 142-143 Nd data reveal that this large block of Archean crust formed by reworking of much older ( 〉 4.2 billion-year-old) mafic crust over a 1.5-billion-year interval of early Earth history. Thus, unlike on modern Earth, mafic crust apparently could survive for more than 1 billion years to form an important source rock for Archean crustal genesis.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...