GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Physiology, American Physiological Society, Vol. 105, No. 3 ( 2008-09), p. 923-932
    Abstract: Duchenne muscular dystrophy is characterized by the absence of dystrophin from muscle cells. Dystrophic muscle cells are susceptible to oxidative stress. We tested the hypothesis that 3 wk of endurance exercise starting at age 21 days in young male mdx mice would blunt oxidative stress and improve dystrophic skeletal muscle function, and these effects would be enhanced by the antioxidant green tea extract (GTE). In mice fed normal diet, average daily running distance increased 300% from week 1 to week 3, and total distance over 3 wk was improved by 128% in mice fed GTE. Running, independent of diet, increased serum antioxidant capacity, extensor digitorum longus tetanic stress, and total contractile protein content, heart citrate synthase, and heart and quadriceps β-hydroxyacyl-CoA dehydrogenase activities. GTE, independent of running, decreased serum creatine kinase and heart and gastrocnemius lipid peroxidation and increased gastrocnemius citrate synthase activity. These data suggest that both endurance exercise and GTE may be beneficial as therapeutic strategies to improve muscle function in mdx mice.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2008
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physiology, American Physiological Society, Vol. 123, No. 6 ( 2017-12-01), p. 1516-1524
    Abstract: The 2016 Colorado Trail Race (CTR) was an ultra-endurance mountain bike race in which competitors cycled for up to 24 h/day between altitudes of 1,675 and 4,025 m to complete 800 km and 21,000 m of elevation gain. In one athlete, we had the unique opportunity to characterize skeletal muscle protein synthesis and mitochondrial respiration in response to a normal activity control period (CON) and the CTR. We hypothesized that mitochondrial protein synthesis would be elevated and mitochondrial respiration would be maintained during the extreme stresses of the CTR. Titrated and bolus doses of ADP were provided to determine substrate-specific oxidative phosphorylation (OXPHOS) and electron transport system (ETS) capacities in permeabilized muscle fibers via high-resolution respirometry. Protein synthetic rates were determined by daily oral consumption of deuterium oxide ( 2 H 2 O). The endurance athlete had OXPHOS (226 pmol·s −1 ·mg tissue −1 ) and ETS (231 pmol·s −1 ·mg tissue −1 ) capacities that rank among the highest published to date in humans. Mitochondrial (3.2-fold), cytoplasmic (2.3-fold), and myofibrillar (1.5-fold) protein synthesis rates were greater during CTR compared with CON. With titrated ADP doses, the apparent K m of ADP, OXPHOS, and ETS increased after the CTR. With provision of ADP boluses after the CTR, the addition of fatty acids (−12 and −14%) mitigated the decline in OXPHOS and ETS capacity during carbohydrate-supported respiration (−26 and −31%). In the face of extreme stresses during the CTR, elevated rates of mitochondrial protein synthesis may contribute to rapid adaptations in mitochondrial bioenergetics. NEW & NOTEWORTHY The mechanisms that maintain skeletal muscle function during extreme stresses remain incompletely understood. In the current study, greater rates of mitochondrial protein synthesis during the energetic demands of ultra-endurance exercise may contribute to rapid adaptations in mitochondrial bioenergetics. The endurance athlete herein achieved mitochondrial respiratory capacities among the highest published for humans. Greater mitochondrial protein synthesis during ultra-endurance exercise may contribute to improved mitochondrial respiration and serve as a mechanism to resist cellular energetic stresses.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...