GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • 1
    Publication Date: 2021-02-08
    Description: Elemental sulfur is commonly regarded as the product of oxidative sulfur cycling in the sediment. However, reports on the occurrence of elemental sulfur in seepage areas are few and thus its origin and mechanisms controlling its distribution are insufficiently understood. Here, we analyzed the multiple sulfur isotopic compositions for elemental sulfur and pyrite from an iron-dominated gas hydrate-bearing sedimentary environment of the South China Sea to unravel the impact of sulfate-driven anaerobic oxidation of methane (SO4-AOM) on the formation of elemental sulfur. The multiple sulfur isotopes reveal variable ranges for both elemental sulfur and pyrite (δ34S: between −15.7 and +23.3‰ for elemental sulfur and between −35.3 and +34.4‰ for pyrite; Δ33S: between −0.08 and +0.06‰ for elemental sulfur and between −0.03 and +0.15‰ for pyrite). The enrichment of 34S in pyrite throughout the sediment core suggests pronounced SO4-AOM in paleo-sulfate-methane transition zones (SMTZ). In addition, the occurrence of seep carbonates with very negative δ13C values (as low as −57‰, V-PDB) coincides with the inferred paleo-SMTZs and agrees with formerly locally pronounced SO4-AOM. Interestingly, the multiple sulfur isotopic composition of elemental sulfur reveals a different pattern from that of pyrite derived from organoclastic sulfate reduction (i.e., with low δ34S and high Δ33S values for the latter). In comparison to coexisting pyrite, most of the elemental sulfur reveals higher δ34S values (as much as +28.9‰), which is best explained by an enrichment of 34S in the residual pool of dissolved sulfide generated by SO4-AOM. As an intermediate sulfur phase, elemental sulfur can form via sulfide oxidation coupled to iron reduction, but it can only persist in the absence of free sulfide. Therefore, the occurrence of 34S enriched elemental sulfur is likely to represent an oxidative product after hydrogen sulfide had vanished due to vertical displacement of the SMTZ. Our observations suggest that elemental sulfur may serve as a useful recorder for reconstructing the dynamics of sulfur cycling in modern and possibly ancient seepage areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-01
    Description: Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...