GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 326 (6111). pp. 373-375.
    Publication Date: 2018-03-02
    Description: Hurricanes and other strong storms can cause important decreases in sea surface temperature by means of vertical mixing within the upper ocean, and by air–sea heat exchange. Here we use satellite-derived infrared images of the western North Atlantic to study sea surface cooling caused by hurricane Gloria (1985). Significant regional variations in sea surface cooling are well correlated with hydrographic conditions. The greatest cooling (up to 5°C) occurred in slope waters north of the Gulf Stream where the seasonal thermocline is shallowest and most compressed; moderate cooling (up to 3 °C) occurred in the open Sargasso Sea where the thermocline is deeper and more diffused; little or no cooling occurred in shallow coastal waters (bottom depth less than 20 m) which were isothermal before the passage of hurricane Gloria. There is a pronounced right-side asymmetry of sea surface cooling with stronger (by a factor of 4) and more extensive (by a factor of 3) cooling found on the right side of the hurricane track. These qualitative results are consistent with the notion that vertical mixing within the upper ocean is the dominant sea surface cooling mechanism of hurricanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 16 (5). pp. 827-837.
    Publication Date: 2016-04-19
    Description: Data from a surface mooring located in the Sargasso Sea at 34°N, 70°W between May 1982 and May 1984 were compared with satellite data to investigate large diurnal sea surface temperature changes. Mooring and satellite measurements are in excellent agreement for those days on which no clouds covered the site at the time of the satellite pass. During the summer half-year at this site, there is a 20% charm of diurnal warming of more than 0.5°C, with values of up to 3.5°C observed in the two-year period. Diurnal warming observed at the mooring has been simulated well by a one-dimensional model driven by local beat and momentum fluxes. Under the conditions of very light wind and strong insolation that produce the Largest surface warming, the surface mixed-layer depth reduces to the convection depth, and wind-mixing becomes unimportant. The thermal response is then limited to depths between 1 and 2 m, making it likely that such events have been underreported in routine ship observations. In all cases observed, the spatial extent of warming events as determined by satellite data are well correlated with the corresponding atmospheric pressure patterns. Conditions giving rise to the largest diurnal warming events are often associated with a westward-extending ridge of the Bermuda high. In the region studied, 57°–75°W and 29°–43°N, diurnal warming of more than 1°C was found on occasion to cover areas in excess of 300 000 km2, with warming of more than 2°C coveting areas in excess of 130 000 km2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 91 (C8). pp. 9739-9748.
    Publication Date: 2019-04-04
    Description: Shipboard hydrographic measurements and moored current meters are used to infer both the large-scale and mesoscale water mass distribution and features of the general circulation in the Canary Basin. We found a convoluted current system dominated by the time-dependent meandering of the eastward flowing Azores Current and the formation of mesoscale eddies. At middepths, several distinctly different water masses are identified: Subpolar Mode and Labrador Sea Water are centered in the northwest, Subantarctic Intermediate Water is centered in the southeast, and the saltier, warmer Mediterranean tongue lies between them. Mesoscale structures of these water masses suggest the presence of middepth meanders and detached eddies which may be caused by fluctuations of the Azores Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 91 (C4). p. 5031.
    Publication Date: 2016-04-19
    Description: Sea surface cooling associated with 13 hurricanes in the western North Atlantic between September 1981 and December 1984 is examined using satellite-derived sea surface temperature fields. Some surface cooling is observed in all cases; however, because of cloud cover and the fairly weak signal in some cases, we see pronounced cooling along an extensive and continuous portion of the storm path for only three strong hurricanes. The persistence of cooling following the passage of a hurricane varies from a few days to at least 16 days. The amplitude of cooling is moderately well correlated with hurricane strength and is as large as 3.5°C. When the hurricanes move rapidly, the maximum cooling occurs well to the right of the track (approximately 70 km), whereas for slowly moving hurricanes the maximum cooling occurs near or on the track. Because western North Atlantic hurricanes are often found in close proximity to high pressure systems, daytime satellite images must be made with some care because of diurnal warming.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...