GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D7.7 . AtlantOS, 20 pp.
    Publication Date: 2018-03-23
    Description: Integration of EU and North American data for the Atlantic Ocean
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D7.8 . AtlantOS, 16 pp.
    Publication Date: 2018-03-23
    Description: Integration and usage of the GEOSS Common service registry in AtlantOS
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D11.2 . AtlantOS, 10 pp.
    Publication Date: 2019-03-11
    Description: Version No.:1.2. -Implementation of AtlantOS Catalogue and GEOSS requirements
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-30
    Description: Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-11
    Description: Report harmonization in data and data processing to facilitate the interoperability of the systems AtlantOS WP7 is dedicated to improve harmonization of data management procedures, and thereby improve the quality, interoperability and discoverability of data resources in AtlantOS. To improve harmonization, AtlantOS WP7 works on multiple levels; a) WP7 has identified selected areas, where significant improvements of interoperability can be obtained. This has resulted in the formulation of a common agreement stating a set of specific minimum standards, which shall ensure cross platform coherence. This includes minimum standards for use of identifiers for platforms and institutions, metadata including vocabularies, quality control and dissemination means. Furthermore, guidelines regarding DOI assignment, catalogue techniques and vocabulary use in AtlantOS have been formulated. b) AtlantOS has formulated and installed a Data Management Plan (DMP) setting the framework for handling and dissemination of AtlantOS data. This was the first step towards improved harmonization and includes an overview of the Data Landscape, prioritization of Essential Variables for AtlantOS, regulations regarding open access to data and recommendations on use of standards. c) AtlantOS WP7 is initiating investigations of the use of GEOSS services, both for technical broker solutions to improve harmonization as well as for dissemination of AtlantOS data resources in an interdisciplinary global context. d) AtlantOS is also working on improving the transcontinental data sharing. A workshop is planned for in 2017 specifically targeting improvement of transcontinental sharing of data from the Atlantic Ocean. We here present the preliminary incentives for improving the transatlantic collaboration.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D11.2 . AtlantOS, 10 pp.
    Publication Date: 2019-03-11
    Description: Version No.: 1 Date: 30. Sep 2015
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Salt marshes provide wave and flow attenuation, making them attractive for coastal protection. It is necessary to predict their coastal protection capacity in the future, when climate change will increase hydrodynamic forcing and environmental parameters such as water temperature and CO2 content. We exposed the European salt marsh species Spartina anglica and Elymus athericus to enhanced water temperature (+ 3°) and CO2 (800 ppm) levels in a mesocosm experiment for 13 weeks in a full factorial design. Afterwards, the effect on biomechanic vegetation traits was assessed. These traits affect the interaction of vegetation with hydrodynamic forcing, forming the basis for wave and flow attenuation. Elymus athericus did not respond to any of the treatments suggesting that it is insensitive to such future climate changes. Spartina anglica showed an increase in diameter and flexural rigidity, while Young’s bending modulus and breaking force did not differ between treatments. Despite some differences between the future climate scenario and present conditions, all values lie within the natural trait ranges for the two species. Consequently, this mesocosm study suggests that the capacity of salt marshes to provide coastal protection is likely to remain constantly high and will only be affected by future changes in hydrodynamic forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Understanding how the salt marsh vegetation will evolve under future climate conditions is essential for predicting the role of marsh ecosystem services in a warmer climate with higher CO 2 -concentrations. In a mesocosm experiment in the northern Wadden Sea, the impact of increased temperature (+ 3 °C) and CO 2 (800 ppm) on salt marsh vegetation was investigated, assessing biomass production in the pioneer zone and low marsh. The pioneer zone, which was dominated by Spartina anglica and exposed to natural tidal inundations , demonstrated a differentiated response between belowground and aboveground biomass. Aboveground biomass increased in response to enhanced CO 2 availability, and belowground biomass increased in response to raised temperatures. Other plant species accounted for less than 18% of the aboveground biomass, and their biomass was suppressed under high CO 2 availability. Increased biomass by Spartina anglica may improve resilience toward sea level rise. Hence, the pioneer zone is expected to maintain its coastal protection and blue carbon storage capacity under future climate conditions. The low marsh, which was dominated by Elymus athericus , was exposed to higher than usual tidal inundations and resembled a scenario with increased sea level. The low marsh showed no response in biomass to increased CO 2 or temperature, which may be due to the increased flooding. The positive response of Spartina anglica (C 4 plant) and the lack of response in Elymus athericus (C 3 plant) counter the notion that C 3 plants are more productive under future climate conditions and demonstrate that C 4 plants can also thrive in future salt marshes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-07
    Description: To reach their net-zero targets, countries will have to compensate hard-to-abate CO2 emissions through carbon dioxide removal (CDR). Yet, current assessments rarely include socio-cultural or institutional aspects or fail to contextualize CDR options for implementation. Here we present a context-specific feasibility assessment of CDR options for the example of Germany. We assess 14 CDR options, including three chemical carbon capture options, six options for bioenergy combined with carbon capture and storage (BECCS), and five options that aim to increase ecosystem carbon uptake. The assessment addresses technological, economic, environmental, institutional, social-cultural and systemic considerations using a traffic-light system to evaluate implementation opportunities and hurdles. We find that in Germany CDR options like cover crops or seagrass restoration currently face comparably low implementation hurdles in terms of technological, economic, or environmental feasibility and low institutional or social opposition but show comparably small CO2 removal potentials. In contrast, some BECCS options that show high CDR potentials face significant techno-economic, societal and institutional hurdles when it comes to the geological storage of CO2. While a combination of CDR options is likely required to meet the net-zero target in Germany, the current climate protection law includes a limited set of options. Our analysis aims to provide comprehensive information on CDR hurdles and possibilities for Germany for use in further research on CDR options, climate, and energy scenario development, as well as an effective decision support basis for various actors. Key Points: - More context-specific assessments of carbon dioxide removal (CDR) options are needed to guide national net-zero decision making - Ecosystem-based CDR options with comparably low implementation hurdles in Germany show relatively small CO2 removal potentials - High CDR potential options in Germany face high institutional, technological and societal hurdles linked in many ways to geological storage
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-07
    Description: In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...