GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Over much of the ocean’s surface, productivity and growth are limited by a scarcity of bioavailable nitrogen. Sedimentary δ15N records spanning the last deglaciation suggest marked shifts in the nitrogen cycle during this time, but the quantification of these changes has been hindered by the complexity of nitrogen isotope cycling. Here we present a database of δ15N in sediments throughout the world’s oceans, including 2,329 modern seafloor samples, and 76 timeseries spanning the past 30,000 years. We show that the δ15N values of modern seafloor sediments are consistent with values predicted by our knowledge of nitrogen cycling in the water column. Despite many local deglacial changes, the globally averaged δ15N values of sinking organic matter were similar during the Last Glacial Maximum and Early Holocene. Considering the global isotopic mass balance, we explain these observations with the following deglacial history of nitrogen inventory processes. During the Last Glacial Maximum, the nitrogen cycle was near steady state. During the deglaciation, denitrification in the pelagic water column accelerated. The flooding of continental shelves subsequently increased denitrification at the seafloor, and denitrification reached near steady-state conditions again in the Early Holocene. We use a recent parameterization of seafloor denitrification to estimate a 30–120% increase in benthic denitrification between 15,000 and 8,000 years ago. Based on the similarity of globally averaged δ15N values during the Last Glacial Maximum and Early Holocene, we infer that pelagic denitrification must have increased by a similar amount between the two steady states.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-18
    Description: The quantitative reconstruction of past seawater salinity has yet to be achieved and the search for a direct and independent salinity proxy is ongoing. Recent culture and field studies show a significant positive correlation of Na/Ca with salinity in benthic and planktonic foraminiferal calcite. For accurate paleoceanographic reconstructions, consistent and reliable calibrations are necessary, which are still missing. In order to assess the reliability of foraminiferal Na/Ca as a direct proxy for seawater salinity, this study presents electron microprobe Na/Ca data, measured on cultured specimens of Trilobatus sacculifer. The culture experiments were conducted over a wide salinity range of 26 to 45, while temperature was kept constant. To further understand potential controlling factors of Na incorporation, measurements were also performed on foraminifera cultured at various temperatures in the range of 19.5 °C to 29.5 °C under constant salinity conditions. Foraminiferal Na/Ca ratios positively correlate with seawater salinity (Na/Caforam = 0.97 + 0.115 ⋅ Salinity, R = 0.97, p 〈 0.005). Temperature on the other hand exhibits no statistically significant relationship with Na/Ca ratios indicating salinity to be the dominant factor controlling Na incorporation. The culturing results are corroborated by measurements on T. sacculifer from Caribbean and Gulf of Guinea surface sediments. In conclusion, planktonic foraminiferal Na/Ca can be applied as a reliable proxy for reconstructing sea surface salinities, albeit species-specific calibrations might be necessary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf–Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between −16.8 and −14.9 at the surface to more radiogenic values near −11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to −11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ −4) and North East Atlantic Deep Water (ɛHf ∼ −0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ −2) and deep Labrador Sea Water (ɛHf ∼ −4.5). The latter layer was formed between the late 1980’s and mid 1990’s during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A 〉100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The nitrogen cycle is fundamental to Earth's biogeochemistry. Yet major uncertainties of quantification remain, particularly regarding the global oceanic nitrogen fixation rate. Hydrogen is produced during nitrogen fixation and will become supersaturated in surface waters if there is net release from diazotrophs. Ocean surveys of hydrogen supersaturation thus have the potential to illustrate the spatial and temporal distribution of nitrogen fixation, and to guide the far more onerous but quantitative methods for measuring it. Here we present the first transect of high resolution measurements of hydrogen supersaturations in surface waters along a meridional 10,000 km cruise track through the Atlantic. We compare measured saturations with published measurements of nitrogen fixation rates and also with model-derived values. If the primary source of excess hydrogen is nitrogen fixation and has a hydrogen release ratio similar to Trichodesmium, our hydrogen measurements would point to similar rates of fixation in the North and South Atlantic, roughly consistent with modelled fixation rates but not with measured rates, which are lower in the south. Possible explanations would include any substantial nitrogen fixation by newly discovered diazotrophs, particularly any having a hydrogen release ratio similar to or exceeding that of Trichodesmium; under-sampling of nitrogen fixation south of the equator related to excessive focus on Trichodesmium; and methodological shortcomings of nitrogen fixation techniques that cause a bias towards colonial diazotrophs relative to unicellular forms. Alternatively our data are affected by an unknown hydrogen source that is greater in the southern half of the cruise track than the northern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-21
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: The Labrador Sea is important for the modern global thermohaline circulation system through the formation of intermediate Labrador Sea Water (LSW) that has been hypothesized to stabilize the modern mode of North Atlantic deep-water circulation. The rate of LSW formation is controlled by the amount of winter heat loss to the atmosphere, the expanse of freshwater in the convection region and the inflow of saline waters from the Atlantic. The Labrador Sea, today, receives freshwater through the East and West Greenland currents (EGC, WGC) and the Labrador Current (LC). Several studies have suggested the WGC to be the main supplier of freshwater to the Labrador Sea, but the role of the southward flowing LC in Labrador Sea convection is still debated. At the same time, many paleoceanographic reconstructions from the Labrador Shelf focussed on late deglacial to early Holocene meltwater run-off from the Laurentide Ice Sheet (LIS), whereas little information exists about LC variability since the final melting of the LIS about 7000 years ago. In order to enable better assessment of the role of the LC in deep-water formation and its importance for Holocene climate variability in Atlantic Canada, this study presents high-resolution middle to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years. Our records reveal that the LC underwent three major oceanographic phases from the mid- to late Holocene. From 6.2 to 5.6 ka, the LC experienced a cold episode that was followed by warmer conditions between 5.6 and 2.1 ka, possibly associated with the late Holocene thermal maximum. While surface waters on the Labrador Shelf cooled gradually after 3 ka in response to the neoglaciation, Labrador Shelf subsurface or bottom waters show a shift to warmer temperatures after 2.1 ka. Although such an inverse stratification by cooling of surface and warming of subsurface waters on the Labrador Shelf would suggest a diminished convection during the last 2 millennia compared to the mid-Holocene, it remains difficult to assess whether hydrographic conditions in the LC have had a significant impact on Labrador Sea deep-water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: The Labrador Current is part of the anticlockwise subpolar gyre and plays a major role in the formation of North Atlantic Deep Water. It is influenced by the West Greenland and Baffin currents supplying warmer Atlantic and cold polar waters, respectively. During the early Holocene, at the final stage of the last deglaciation, meltwater and iceberg discharge caused highly variable conditions in the Labrador Current. In order to assess its sensitivity to such freshening, this study provides a well-resolved Holocene paleoclimatic record from the Labrador Shelf. Based on benthic foraminiferal faunal and alkenone biomarker analyses, we differentiated four distinct climatic periods in the western Labrador Sea. From 8.9 to 8.6 ka BP, the Labrador Shelf was dominated by polar water outflow from Baffin Bay and covered by perennial sea ice. Between 8.6 and 7.4 ka BP, a strong subsurface inflow of warmer Atlantic water masses is ascribed to an intensification and redirection of the West Greenland Current. At 7.4 ka BP, the decreased influence of Atlantic water masses on the Labrador Shelf marks the establishment of winter convection leading to the formation of Labrador Sea Water in the central basin. Concurrently, an intensified polar water outflow through the Canadian Gateways strengthened the inner Labrador Current, and higher primary productivity suggests longer spring blooms because of a shorter sea-ice season during the Holocene Thermal Maximum. In the late Holocene after 3 ka BP, periodic fluctuations of primary productivity may tentatively be correlated with stronger and weaker northwesterly winds.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: A significant reduction in the Atlantic Meridional Overturning Circulation and rapid northern Hemisphere cooling 8200 years ago have been linked to the final melting of the Laurentide Ice Sheet. Although many studies associated this cold event with the drainage of Lake Agassiz-Ojibway, recent model simulations have shown that the Hudson Bay Ice Saddle collapse would have had much larger effects on the Atlantic Meridional Overturning Circulation than the lake outburst itself. Based on a combination of Mg/Ca and oxygen isotope ratios of benthic foraminifera, this study presents the first direct evidence of a major Labrador shelfwater freshening at 8.5 ka BP, which we associate with the Hudson Bay Ice Saddle collapse. The freshening is preceded by a subsurface warming of the western Labrador Sea, which we link to the strengthening of the West Greenland Current that could concurrently have accelerated the ice saddle collapse in Hudson Bay.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...