GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 162 (2). pp. 229-241.
    Publication Date: 2018-03-16
    Description: The presented data on indirect and direct calorimetry in Halicryptus spinulosus, a species with prominent ecological significance in parts of the Baltic Sea, provide a basis for a better understanding of the metabolic adaptation of these animals to low oxygen availability in their environment. Metabolic rates in H. spinulosus were measured respirometrically as oxygen consumption and calorimetrically as heat dissipation. Oxygen uptake rates are in the range of M O2 = 3.81 ± 1.37 μmol O2·g−1 dry mass·h−1. Upon reimmersion into normoxic seawater after an anoxic incubation of 7 days, the animals exhibit an overshoot of oxygen consumption by a factor of 2.4. It takes at least 2 days for the animals to balance their oxygen consumption to previously measured rates. Direct calorimetry exhibits different strategies of H. spinulosus to cope with declining oxygen and anoxia. During the first 2 transitional days to anoxia in the calorimeter, the animals decreased heat dissipation moderately down to 53.4 and 26%, respectively, of aerobic values. The animals are not necessarily quiescent at the beginning of anoxia, but at the end of the experiments after 14 days metabolic rates have dropped substantially down to ≈2% of normoxic values. These findings are discussed with regard to an effective adaption to frequently changing oxygen regimes in deeper parts of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The response of the benthos to the break up of anoxia in the Kiel Bight (Western Baltic Sea), and to three succeeding events of “external” food supply, consisting of a settled autumn plankton bloom, resuspended matter and macrophyte input during winter, and of a sedimented spring phytoplankton bloom, is described on a community level. The first input of oxygen broke up anoxic conditions and made stored food resources available to decomposition. This “internal” food supply, mainly consisting of protein (folin positive matter), was followed by a drastic increase in heat production and ATP-biomass and caused a period of low redox potential, which lasted for several weeks. During this phase, a plankton bloom (dinoflagellates and diatoms) settled to the sea floor. Although there was an immediate response of benthic activity, this food input was not completely consumed by the strongly disturbed benthic community. During winter resuspended matter and the input of macrophyte debris caused another maximum in benthic activity and biomass despite the low temperature. The response to sedimentation of cells from a diatom bloom during mid March was also without any time lag and was consumed within 5–6 wk. A comparison of the amount of particles collected in a sediment trap with the increase of organic matter in the sediment demonstrated that the sediment collected four times (autumn) and seven to eight times (spring) more than measured by the sediment trap. Strong indications of food limitation of benthic activity were found. During autumn and winter these indications were caused more by physical than by biological processes. The three events of “external” food supply caused a temporary shift in the type of metabolism towards fermentation processes and reduced the redox potential. In spring the development of the benthic community was still being strongly influenced by the events of the preceding summer and autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Cushman Foundation for Foraminiferal Research
    In:  Journal of Foraminiferal Research, 25 . pp. 75-82.
    Publication Date: 2018-03-21
    Description: The response of deep-sea benthic foraminifera to a simulated sedimentation event was assessed in a shipboard microcosm by using transmission electron microscopy, organic carbon, adenosine nucleotide, ETS assays and live observations. A rapid activation of foraminiferal metabolism was detected with an increase in ETS activity and a distinct decrease in AMP to build up A TP. Based on this phy iological-awakening reaction, food was gathered by pseudopodia] activity and ingested in high quantities. Three days after feeding, high quality food was found in the digestion vacuoles leading to an increase of 89% in individual organic carbon contents. During the following six days, this food was converted into biomass as lipids and other reserve compounds were built up. After ten days, digestion vacuoles contained degraded matter onJy. The final shift in individual biomass was 16.9% in comparison to the initial population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Marine Systems, 11 (3-4). pp. 269-278.
    Publication Date: 2016-01-29
    Description: The present literature on biologically mediated fluxes from the benthic nepheloid layer (BNL) across the sediment-water interface into the sediment and vice versa is reviewed. The processes involved are categorised according to direct bioresuspension and biodeposition, i.e. direct interception of the animal with particles, and those effects, which are indirectly created by benthic organisms, e.g., changes of physical properties in the sediments, constructions like tubes and pits and the corresponding changes in hydrodynamic conditions. It is concluded that benthic organisms significantly increase the flux of particles across the interface and that the physically created fluxes are easily modified by a factor of 2 and more.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-07
    Description: Sediment cores of 20 cm diameter contaning the natural benthic fauna were subjected to low oxygen conditions in a laboratory microcosm system. After several days of oxic conditions ('oxic stage') the oxygen content of the water was reduced to 25% saturation for 15 d ('hypoxic stage'), followed by a 'reoxygenation stage'. Effective solute transport rates were calculated using measurements with the conservative tracer ion bromide. Profiles of oxygen and ΣCO2 were measured and molecular diffusive as well as effective fluxes, account mg for effective solute exchange, were calculated. The overall response of the benthic community was to compensate for low oxygen content of the overlying water by increased pumping activity. On average, effective diffusion coefficients (Den} were 3 times higher in hypoxia than under oxic conditions. D eff reached 1.5 x 10^-4 cm2 s^-1, a value 30 times that of molecular diffusion. During hypoxia we observed low molecular diffusive O2 flux, higher effective O2 flux, as well as an increase in ΣCO2 within the sediment. We interpret this as a shift of transport away from diffusion within the bulk sediment interstices (oxic conditions) to the advective transport pathways along burrows during hypoxia. This facilitates fast transport of oxygen and bromide along burrows and contrasts with the slower transport of CO2 from the interstices governed by molecular diffusion. In this transient situation calulations based on gradients result in an unrealistic molar ratio of fluxes(CO2/O2)as high as 11.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-26
    Description: Abundance, biofacies and ATP content of benthic foraminifera (〉63 μm) were studied in the Northeast Water (NEW) Polynya (77–81°N, 5–17°W) over the ice-free summer, 1993, to investigate how a polynya system might influence the underlying benthic community. In the living assemblage, distinguished by Rose Bengal staining, over 60 taxa could be identified. The biofacies identified was similar to that of other Arctic shelf habitats. Foraminifera were counted in 3 size fractions (63–125 μm, 125–250 μm and 〉250 μm), with 65% of the foraminifera occurring in the smallest size fraction (63–125 μm). Total abundances (〉63 μm) in the uppermost 1 cm averaged approximately 200 ind/10 cm3 and declined down-core, as did the number of species. Abundances and species composition correlated positively with sediment chlorophyll and ATP content, with maxima occurring in the shallower northern regions of the polynya, suggesting a general dependence on food. Foraminera biomass was estimated to be 0.1-0.3 g Corg/m2. Abundances, biomass and ATP content were comparable to ice-free, deep-sea regions in the Norwegian Sea. Temporal changes observed over a 2 month period at one location were difficult to distinguish from spatial and analytical variability. Contrary to expectations, growth was unpronounced at the community and at a species level, implying either a delayed response of the benthic foraminiferal community to food inputs from the overlying water column or the presence of biological limitations other than food, such as predation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-22
    Description: Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are ∼ 3–4 μM OC (5–10% of dissolved OC) and ∼ 0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  UNSPECIFIED, Kiel, 2 pp.
    Publication Date: 2015-02-18
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wachholtz
    In:  Christiana Albertina, 41 . pp. 35-89.
    Publication Date: 2019-11-18
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...