GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-19
    Description: The Joint Global Ocean Flux Study (JGOFS) has completed a decade of intensive process and time-series studies on the regional and temporal dynamics of biogeochemical processes in five diverse ocean basins. Its field program also included a global survey of dissolved inorganic carbon (DIC) in the ocean, including estimates of the exchange of carbon dioxide (CO2) between the ocean and the atmosphere, in cooperation with the World Ocean Circulation Experiment (WOCE). This report describes the principal achievements of JGOFS in ocean observations, technology development and modelling. The study has produced a comprehensive and high-quality database of measurements of ocean biogeochemical properties. Data on temporal and spatial changes in primary production and CO2 exchange, the dynamics of of marine food webs, and the availability of micronutrients have yielded new insights into what governs ocean productivity, carbon cycling and export into the deep ocean, the set of processes collectively known as the "biological pump." With large-scale, high-quality data sets for the partial pressure of CO2 in surface waters as well for other DIC parameters in the ocean and trace gases in the atmosphere, reliable estimates, maps and simulations of air-sea gas flux, anthropogenic carbon and inorganic carbon export are now available. JGOFS scientists have also obtained new insights into the export flux of particulate and dissolved organic carbon (POC and DOG), the variations that occur in the ratio of elements in organic matter, and the utilization and remineralization of organic matter as it falls through the ocean interior to the sediments. JGOFS scientists have amassed long-term data on temporal variability in the exchange of CO2 between the ocean and atmosphere, ecosystem dynamics, and carbon export in the oligotrophic subtropical gyres. They have documented strong links between these variables and large-scale climate patterns such as the El Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). An increase in the abundance of organisms that fix free nitrogen (N-2) and a shift in nutrient limitation from nitrogen to phosphorus in the subtropical North Pacific provide evidence of the effects of a decade of strong El Ninos on ecosystem structure and nutrient dynamics. High-quality data sets, including ocean-color observations from satellites, have helped modellers make great strides in their ability to simulate the biogeochemical and physical constraints on the ocean carbon cycle and to extend their results from the local to the regional and global scales. Ocean carbon-cycle models, when coupled to atmospheric and terrestrial models, will make it possible in the future to predict ways in which land and ocean ecosystems might respond to changes in climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Other] In: 13. Ocean Sciences Meeting, 23.02, Honolulu, Hawaii, USA .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Academic Press
    In:  In: Encyclopedia of Ocean Sciences. , ed. by Cochran, J. K., Bokuniewicz, H. and Yager, P. Academic Press, London, UK, pp. 168-173. 3. Ed. ISBN 9780128130810
    Publication Date: 2021-05-10
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 13 (1). pp. 135-160.
    Publication Date: 2017-06-06
    Description: Physical influences on biological primary production in the North Atlantic are investigated by coupling a four-component pelagic ecosystem model with a high-resolution numerical circulation model. A series of sensitivity experiments demonstrates the important role of an accurate formulation of upper ocean turbulence and advection numerics. The unrealistically large diffusivity implicit in upstream advection approximately doubles primary production when compared with a less diffusive, higher-order, positive-definite advection scheme.This is of particular concern in the equatorial upwelling region where upstream advection leads to a considerable increase of upper ocean nitrate concentrations. Counteracting this effect of unrealistically large implicit diffusion by changes in the biological model could easily lead to misconceptions in the interpretation of ecosystem dynamics. Subgrid-scale diapycnal diffusion strongly controls biological production in the subtropical gyre where winter mixing does not reach the nutricline. The parameterization of vertical viscosity is important mainly in the equatorial region where friction becomes an important agent in the momentum balance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 57 . pp. 613-639.
    Publication Date: 2017-11-28
    Description: A means of assimilating simulated satellite ocean color data with a coupled physical-biological model of the North Atlantic Ocean is implemented, allowing the relative sensitivities of different biological parameters to those data to be investigated. The model consists of an eddy-permitting general circulation model derived from the WOCE Community Modeling Effort and a nitrogen-based, four-compartment NPZD marine ecosystem model. Many of the parameters in marine ecosystem models are poorly known and via assimilation, we hope to better constrain their values. The control parameters chosen for the variational assimilation are the model parameters involved in parameterizations of recycling as these are the most poorly known. Simulated observations are taken while following several floats seeded in varying dynamical biogeochemical provinces of the North Atlantic model domain over a six-month period. Twin experimental results show that, for the given functional forms of growth, mortality and grazing, the following parameters can be successfully recovered from simulated satellite ocean color data: nitrate and detrital recycling parameters in the trade wind domain, zooplankton parameters at higher latitudes (westerly wind and polar domains), and the phytoplankton mortality rate in all regions. By simultaneously assimilating ocean color data in different biological provinces, it becomes possible to successfully constrain all ecosystem parameters at once.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 8 (6). pp. 1551-1464.
    Publication Date: 2019-09-23
    Description: Seawater concentrations of the four brominated trace gases dibromomethane (CH2Br2), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3) were measured at different depths of the water column in the Iberian upwelling off Portugal during summer 2007. Bromocarbon concentrations showed elevated values in recently upwelled and aged upwelled waters (mean values of 30 pmol L−1 for CHBr3), while values in the open ocean were significantly lower (7.4 pmol L−1 for CHBr3). Correlations with biological variables and marker pigments indicated that phytoplankton could be identified as a weak bromocarbon source in the open ocean. In upwelled water masses along the coast, halocarbons were not correlated to Chl-a, indicating an external source, overlapping the possible internal production by phytoplankton. We showed that the tidal frequency had a significant influence on halocarbon concentrations in the upwelling and we linked those findings to a strong intertidal coastal source, as well as to a transport of those halocarbon enriched coastal waters by westward surface upwelling currents. Coastal sources and transport can be accounted for maximum values of up to 185.1 pmol L−1 CHBr3 in the upwelling. Comparison with other productive marine areas revealed that the Iberian upwelling had stronger halocarbon sources than the phytoplankton dominated sources in the Mauritanian upwelling. However, the concentrations off the Iberian Peninsula were still much lower than those of coastal macroalgal influenced waters or those of polar regions dominated by cold water adapted diatoms
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...