GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
Document type
Years
  • 1
    Publication Date: 2024-08-20
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights: • Environmental conditions cause specific zooplankton life strategies. • No ontogenetic or diel vertical migration in the life cycle of Calanus chilensis. • Spatial expansion of Calanus chilensis secondary production far offshore. • Compacted surface biomass of Calanus chilensis allows easy foraging by anchovy. Abstract: Calanid copepods of the genera Calanus and Calanoides are key components of zooplankton communities in upwelling systems. Here, we compare the life-history traits of Calanus chilensis from the Humboldt Current Systems (HCS) off northern Peru and its counterpart Calanoides natalis from the northern Benguela Current System (BCS) off Namibia. A comprehensive data set of the distribution and abundance patterns of these species along extensive horizontal and vertical scales is presented. C. chilensis from the HCS was almost exclusively restricted to the surface layer (50–0 m) above the oxygen minimum zone (OMZ), whereas C. natalis from the BCS inhabited the entire water column down to 800 m performing ontogenetic vertical migration (OVM) through the OMZ. Resting stages of C. natalis at depth accumulated high amounts of lipid (30–60% of dry mass, DM), whereas C. chilensis did not rely on lipid reserves. These findings confirm that the life cycle of C. chilensis does not include OVM with diapause at depth. Surprisingly, the regional distribution of C. chilensis secondary production extended much further offshore (〉200 km from the coast) than is typical of other coastal upwelling systems. Deviating environmental conditions forced the two key calanid species to develop specific, but different life strategies for HCS and BCS. Compacted biomass concentrations of C. chilensis in the surface layer from the shelf (≤3 g DM m−2) to offshore waters (≤1.5 g DM m−2) facilitate easy and efficient foraging by predators such as juvenile Peruvian anchovies. In contrast, a large fraction of the C. natalis biomass occurs within the OMZ and is thus out of reach for hypoxia-sensitive predators. Calanoid copepods (e.g. C. chilensis) play a crucial role as important prey for growth and recruitment of small pelagic fish. Thus, the compacted biomass and high productivity of C. chilensis at the surface derived from its adaptive life-history traits (no OVM) may explain the superior trophic transfer efficiency and hence enormous fisheries yield of the HCS compared to the BCS.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...