GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-20
    Description: The timing of initiation of human impacts on the global climate system is actively debated. Anthropogenic effects on the global climate system are evident since the Industrial Revolution, but humans may have altered biomass burning, and hence the climate system, for millennia. We use the specific biomarker levoglucosan to produce the first high-temporal resolution hemispheric reconstruction of Holocene fire emissions inferred from ice core analyses. Levoglucosan recorded in the Greenland North Greenland Eemian ice core significantly increases since the last glacial, resulting in a maximum around ~2.5 ka and then decreasing until the present. Here we demonstrate that global climate drivers fail to explain late Holocene biomass burning variations and that the levoglucosan maximum centered on ~2.5 ka may be due to anthropogenic land clearance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Highlights: • We provide comprehensive discussion of carbon cycle forcings in interglacials. • We compare transient simulations of climate-carbon cycle models through Holocene and Eemian interglacials. • We synthesyze role of forcings in previous and current study in one summary figure. Abstract: Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics – shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO2 dynamics.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-05
    Description: One of the controlling factors of NEE that is highly sensitive to changes in climate is fire activity. Here we present results form a transient integration with the fully coupled MPI- Earth System Model (MPI-ESM) of the Max-Planck-Institute for Meteorology covering the last 6000 years. The model comprises dynamical components for atmosphere, ocean, and biosphere including an approach to simulate fire dynamics. The simulation is analyzed with a focus on land carbon and fire dynamics. A range of observational products is used to constrain the models ability to simulate fire distribution and changes in fire regimes over the course of the last 6000 years. On the global land scale, the model run shows a small decrease of the global mean temperature and a decline in annual precipitation. For the land carbon storage there is a significant decrease. On the regional scale, the effect on temperature and precipitation due to changes in the orbital parameters with time is much stronger. A shift of the tropical rain belt combined with changes in vegetation is simulated. Striking is for example a reduction in the vegetation cover in central East Asia over the last 6000 years with a subsequent decreasing trend in land carbon. Related to these climatic changes the fire activity is changing as well. We simulate a reduction of 5% in annual global burned area within the last 6000 years. Regionally, the simulation points out trends in the fire activity corresponding to the changes in vegetation shifts: e.g. there is an increase of ~ +15% in central East Asia and a reduction of about 20% in tropical West Africa in burned area mainly a result of the redistribution of fuel abundance. Simulated changes in fire activity are compared to fire activity records reported in the global charcoal database (Power et al., 2008) and levoglucosan values out of ice cores. A special focus of the analysis will lie on an assessment of correlation between fire activity and large-scale climate indexes (e.g. ENSO, NAO). Focusing on the last 100 yrs the modeled variability is checked against a reconstruction of a yearly global fire history (Mouillot et al., 2005). This comparison points out regions with a significant influence of anthropogenic disturbed fires, which are not represented in the ESM, but play a major role in the last few decades.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-05
    Description: One of the controlling factors of net ecosystem exchange that is highly sensitive to changes in climate is fire activity. A model study to describe these controlling factors is validated using multiple proxies to understand fire activity on a continental scale. We present results form a transient integration with the fully coupled Earth System Model (ESM) ECHAM5/MPI-OM1/JSBACH of the Max-Planck-Institute for Meteorology covering the last 6000 years. The model comprises dynamical components for atmosphere, ocean, and biosphere including an approach to simulate fire dynamics. The simulation is analyzed with a focus on land carbon and fire dynamics. A range of observational products are used to constrain the models ability to simulate fire distribution and changes in fire regimes over the course of the last 6000 years. On the global land scale, the model run shows a small decrease of the global mean temperature and a decline in annual precipitation. For the land carbon storage there is a significant decrease. Due to the changes in the orbital parameters with time, regionally the effect on precipitation and temperature is stronger, which results in a shift of the tropical rain belt combined with changes in vegetation. Striking is for example a reduction in the vegetation cover in central East Asia over the last 6000 years with a subsequent decreasing trend in land carbon. Related to climatic changes the fire activity is changing as well. We simulate a reduction of 5% in annual global burned area within the last 6000 years. Regionally, the simulation points out trends in the fire activity corresponding to the changes in vegetation shifts: e.g. there is an increase of 15% in central East Asia and a reduction of about 20% in tropical West Africa in burned area mainly a result of the redistribution of fuel abundance. Simulated changes in fire activity are compared to fire activity records reported in the global charcoal database (Power et al., 2008) and levoglucosan values out of ice cores. As the charcoal data and levoglucosan data show opposite trends, we demonstrate the sensitivity of the modeled and observed trend to the chosen grid boxes of the model domain. Whereas the charcoal sites are biased to North-America and show an opposite trend than the ice-core data from Kilimanjaro, the investigation of levoglucosan data out of remote ice cores (EPICA or NEEM) are additional used to get a global view on the trend in fire activity.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-05
    Description: One of the controlling factors of net ecosystem exchange that is highly sensitive to changes in climate is fire activity. A model study to describe these controlling factors is validated using multiple proxies to understand fire activity on a continental scale. We present results form a transient integration with the fully coupled Earth System Model (ESM) ECHAM5/MPI-OM1/JSBACH of the Max-Planck-Institute for Meteorology covering the last 6000 years. The model comprises dynamical components for atmosphere, ocean, and biosphere including an approach to simulate fire dynamics. The simulation is analyzed with a focus on land carbon and fire dynamics. A range of observational products are used to constrain the models ability to simulate fire distribution and changes in fire regimes over the course of the last 6000 years. On the global land scale, the model run shows a small decrease of the global mean temperature and a decline in annual precipitation. For the land carbon storage there is a significant decrease. Due to the changes in the orbital parameters with time, regionally the effect on precipitation and temperature is stronger, which results in a shift of the tropical rain belt combined with changes in vegetation. Striking is for example a reduction in the vegetation cover in central East Asia over the last 6000 years with a subsequent decreasing trend in land carbon. Related to climatic changes the fire activity is changing as well. We simulate a reduction of 5% in annual global burned area within the last 6000 years. Regionally, the simulation points out trends in the fire activity corresponding to the changes in vegetation shifts: e.g. there is an increase of 15% in central East Asia and a reduction of about 20% in tropical West Africa in burned area mainly a result of the redistribution of fuel abundance. Simulated changes in fire activity are compared to fire activity records reported in the global charcoal database (Power et al., 2008) and levoglucosan values out of ice cores. As the charcoal data and levoglucosan data show opposite trends, we demonstrate the sensitivity of the modeled and observed trend to the chosen grid boxes of the model domain. Whereas the charcoal sites are biased to North-America and show an opposite trend than the ice-core data from Kilimanjaro, the investigation of levoglucosan data out of remote ice cores (EPICA or NEEM) are additional used to get a global view on the trend in fire activity.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...