GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-23
    Description: A small-scale oceanic eddy, which was generated in autumn 2011 at the headland of Cap-Vert off the coast of Senegal, West Africa, and then propagated westward into the open North Atlantic Ocean, is studied by multi-sensor satellite and surface drifter data. The eddy was generated after a sudden increase of the trade winds causing an enhanced southward flow and upwelling at the coast of Senegal. After this wind burst event, an extremely nonlinear cyclonic eddy with a radius of about 10 to 20 km evolved downstream of Cap-Vert with Rossby number larger than one. Our analysis suggests that the eddy was generated by flow separation at the headland of Cap-Vert. The eddy was tracked on its way into the open North Atlantic Ocean from satellites over 31 days via its sea surface temperature and chlorophyll-a (CHL) signature and by a satellite-tracked surface drifter. The satellite images show that this small-scale eddy transported nutrients from the upwelling region westward into the oligotrophic North Atlantic thus giving rise to enhanced CHL concentration there. Maximum CHL concentration was encountered few days after vortex generation, which is consistent with a delayed plankton growth following nutrient supply into the euphotic zone within the eddy. Furthermore, the eddy was imaged by the synthetic aperture radar (SAR) onboard the Envisat satellite. It is shown that the radar signatures of cold eddies result from damping of short surface waves by biogenic surface films which arise from surface-active material secreted by the biota in the cold eddy as well as by the change of the stability of the air–sea interface. Highlights: ► Processes during the onset of coastal upwelling off West Africa ► Multi-sensor remote sensing and in-situ observations ► Highly-nonlinear, small scale eddy generation at Cap-Vert ► NRCS reduction in parts of the eddy due to biogenic surface films
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: Remote Sensing of the European Seas. , ed. by Barale, V. and Gade, M. Springer, Berlin [u.a.], pp. 319-330. ISBN 978-1-402-06771-6
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Remote Sensing of the African Seas. , ed. by Barale, V. and Gade, M. Springer, Dordrecht, Netherlands, pp. 205-231. ISBN 978-94-017-8007-0
    Publication Date: 2015-03-05
    Description: Oceanic eddies having scales from several hundred meters to several hundred kilometers are ubiquitous phenomena in the World’s ocean. This became evident only after they could be observed from satellites and space shuttles. Here we present several images taken in different spectral bands which show signatures of eddies of different spatial scales in sea areas around Africa. In particular, we present a series of satellite images showing the propagation of a small-scale cyclonic (cold) eddy generated at Cap-Vert at the coast of Senegal into the open ocean. We show that this small-scale eddy transported nutrients from the Senegal upwelling region westward into the oligotrophic North Atlantic thus giving rise to enhanced chlorophyll-a concentration there. Since eddies are also areas of high fish population, knowledge of their position and properties is of great importance for fishery.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-24
    Description: A weakly nonhydrostatic, two-layer numerical model based on the Boussinesq equations is presented which is capable of describing, among others, the generation and propagation of nonlinear weakly dispersive internal waves in the Strait of Gibraltar. The model depends on one space coordinate only, but it retains several features of a fully three-dimensional model by including a realistic bottom profile, a variable channel width, and a trapezoidal channel cross section. The nonlinear primitive Boussinesq equations include horizontal diffusion, bottom friction, and friction between the two water layers. The model is driven by a height difference of the mean interface depth between the Atlantic and the Mediterranean boundaries and by semidiurnal tidal oscillations of the barotropic transport. The model presented in this paper describes (1) the mean and tidal flow in the Strait of Gibraltar, (2) the variation of the depth of the interface during a tidal cycle, (3) the generation of strong depressions of the interface at the western sides of the Spartel Sill and the Camarinal Sill, (4) the generation of strong eastward propagating internal bores, and (5) their disintegration into trains of internal solitary waves. The surface convergence patterns associated with depressions of the interface at the Camarinal Sill, internal bores, and internal solitary waves are calculated and compared with roughness patterns visible on synthetic aperture radar (SAR) images of the first European Remote Sensing Satellite ERS 1. In total, 155 ERS 1 SAR scenes from 94 satellite overflights over the Strait of Gibraltar, which were acquired in the period from January 1992 to March 1995, have been analyzed. It is shown that the proposed model is capable of explaining the observed temporal and spatial evolution of surface roughness patterns associated with eastward propagating internal waves inside the Strait of Gibraltar as well as the observed east-west asymmetry of the internal wave field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 27 . pp. 648-663.
    Publication Date: 2018-04-06
    Description: A new numerical two-layer model is presented, which describes the generation of internal tidal bores and their disintegration into internal solitary waves in the Strait of Messina. This model is used to explain observations made by the synthetic aperture radar (SAR) from the European Remote Sensing satellites ERS 1 and ERS 2. The analysis of available ERS 1/2 SAR data of the Strait of Messina and adjacent sea areas show that 1) northward as well as southward propagating internal waves are generated in the Strait of Messina, 2) southward propagating internal waves are observed more frequently than northward propagating internal waves, 3) sea surface manifestations of southward as well as northward propagating internal waves are stronger during periods where a strong seasonal thermocline is known to be present, 4) southward propagating internal bores are released from the sill between 1 and 5 hours after maximum northward tidal flow and northward propagating internal bores are released between 2 and 6 hours after maximum southward tidal flow, and 5) the spatial separation between the first two internal solitary waves of southward propagating wave trains is smaller in the period from July to September than in the period from October to June. The numerical two-layer model is a composite of two models consisting of 1) a hydrostatic “generation model,” which describes the dynamics of the water masses in the region close to the strait’s sill, where internal bores are generated, and 2) a weakly nonhydrostatic “propagation model,” which describes the dynamics of the water masses outside of the sill region where internal bores may disintegrate into internal solitary waves. Due to a technique for movable lateral boundaries, the generation model is capable of simulating the dynamics of a lower layer that may intersect the bottom topography. The proposed generation–propagation model depends on one space variable only, but it retains several features of a fully three-dimensional model by including a realistic channel depth and a realistic channel width. It is driven by semidiurnal tidal oscillations of the sea level at the two open boundaries of the model domain. Numerical simulations elucidate several observed characteristics of the internal wave field in the Strait of Messina, such as north–south asymmetry, times of release of the internal bores from the strait’s sill, propagation speeds, and spatial separations between the first two solitary waves of internal wave trains.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-06
    Description: On 24 and 25 October 1995, high-resolution oceanographic measurements were carried out in the Strait of Messina by using a towed conductivity-temperature-depth chain and a vessel-mounted acoustic Doppler current profiler. During the period of investigation the surface water of the Tyrrhenian Sea north of the strait sill was heavier than the surface water of the Ionian Sea south of the strait sill. As a consequence, during northward tidal flow surface water of the Ionian Sea spread as a surface jet into the Tyrrhenian Sea, whereas during southward tidal flow heavier surface water of the Tyrrhenian Sea spread, after having sunk to a depth of about 100 m, as a subsurface jet into the Ionian Sea. Both jets had the form of an internal bore, which finally developed into trains of internal solitary waves whose amplitudes were larger north than south of the strait sill. These measurements represent a detailed picture of the tidally induced internal dynamics in the Strait of Messina during the period of investigation, which contributes to elucidate several aspects of the general internal dynamics in the area: 1) Associated with the tidal flow are intense water jets whose equilibrium depth strongly depends on the horizontal density distribution along the Strait of Messina; 2) although climatological data show that a large horizontal density gradient in the near-surface layer along the Strait of Messina exists, its reversal can occur; 3) fluctuations in the larger-scale circulation patterns that determine the inflow of the modified Atlantic water into the Eastern Mediterranean Sea can be responsible for this reversal. As the tidally induced internal waves reflect the variability in the horizontal density distribution along the Strait of Messina, it is suggested that from the analysis of synthetic aperture radar imagery showing sea surface manifestations of internal waves in this area fluctuations of larger-scale circulation patterns in the Mediterranean Sea can be inferred.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...