GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 110 (44). pp. 17668-17673.
    Publication Date: 2014-01-27
    Description: Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Summary Meteor Cruise M81/1 was dedicated to the investigation of the distribution of dissolved and particulate trace metals and their isotopic compositions (TEIs) in the full water column of the tropical Atlantic Ocean and their driving factors including main external inputs and internal cycling and ocean circulation. The research program is embedded in the international GEOTRACES program (e.g. Henderson et al., 2007), which this cruise was an official part of and thus corresponds to GEOTRACES cruise GA11. This cruise was completely dedicated to the trace metal clean and contamination-free sampling of waters and particulates for subsequent analyses of the TEIs in the home laboratories of the national and international participants. Besides a standard rosette for the less contaminant prone metals, trace metal clean sampling was realized by using a dedicated and coated trace metal clean rosette equipped with Teflon-coated GO-FLO bottles operated via a polyester coated cable from a mobile winch that was thankfully made available by the U.S. partners of the GEOTRACES program for this cruise. The particulate samples were also collected under trace metal clean conditions using established in-situ pump systems. The cruise track led the cruise southward from the Canary Islands to 11°S and then continued northwestward along the northern margin of South America until it reached Port of Spain, Trinidad & Tobago. The track crossed areas of major external inputs including exchange with the volcanic Canary Islands, the Saharan dust plume, as well as the plume of the Amazon outflow. In terms of internal cycling the equatorial high biological productivity band, as well as increased productivity associated with the Amazon Plume were covered. All major water masses contributing the Atlantic Meridional Overturning Circulation, as well as the distinct narrow equatorial surface and subsurface east-west current bands were sampled. A total of 17 deep stations were sampled for the different dissolved TEIs, which were in most cases accompanied by particulate sampling. In addition, surface waters were continuously sampled under trace metal clean conditions using a towed fish.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Spanish Society for Microbiology (SEM)
    In:  International Microbiology, 9 (4). pp. 259-266.
    Publication Date: 2017-05-30
    Description: Communities of green sulfur bacteria were studied in selected marine and saline habitats on the basis of gene sequences of 16S rRNA and the Fenna- Matthews-Olson (FMO) protein. The availability of group-specific primers for both 16S rDNA and the fmoA gene, which is unique to green sulfur bacteria, has, for the first time, made it possible to analyze environmental communities of these bacteria by culture-independent methods using two independent genetic markers. Sequence results obtained with fmoA genes and with 16S rDNA were largely congruent to each other. All of the 16S rDNA and fmoA sequences from habitats of the Baltic Sea, the Mediterranean Sea, Sippewissett Salt Marsh (Massachusetts, USA), and Bad Water (Death Valley, California, USA) were found within salt-dependent phylogenetic lines of green sulfur bacteria established by pure culture studies. This strongly supports the existence of phylogenetic lineages of green sulfur bacteria specifically adapted to marine and saline environments and the exclusive occurrence of these bacteria in marine and saline habitats. The great majority of clone sequences belonged to different clusters of the Prosthecochloris genus and probably represent different species. Evidence for the occurrence of two new species of Prosthecochloris was also obtained. Different habitats were dominated by representatives from the Prosthecochloris group and different clusters or species of this genus were found either exclusively or as the clearly dominant green sulfur bacterium at different habitats
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Dissimilatory iron reduction and sulfate reduction are the most important processes for anaerobic mineralization of organic carbon in marine sediments. The thermodynamics and kinetics of microbial Fe(III) reduction depend on the characteristics of the Fe(III) minerals, which influence the potential of Fe(III)-reducers to compete with sulfate-reducers for common organic substrates. In the present study, we tested different methods to quantify and characterize microbially reducible Fe(III) in sediments from a transect in Kongsfjorden, Svalbard, using different standard sequential endpoint extractions and time-course extractions with either ascorbate or a Fe(III)-reducing microbial culture. Similar trends of increasing ‘reactive Fe’ content of the sediment along the fjord transect were found using the different extraction methods. However, the total amount of ‘reactive Fe’ extracted differed between the methods, due to different Fe dissolution mechanisms and different targeted Fe fractions. Time-course extractions additionally provided information on the reactivity and heterogeneity of the extracted Fe(III) minerals, which also impact the favorability for microbial reduction. Our results show which fractions of the existing Fe extraction protocols should be considered ‘reactive’ in the sense of being favorable for microbial Fe(III) reduction, which is important in studies on early diagenesis in marine sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Glacial meltwater is an important source of bioessential trace elements to high latitude oceans. Upon delivery to coastal waters, glacially sourced particulate trace elements are processed during early diagenesis in sediments and may be sequestered or recycled back to the water column depending on local biogeochemical conditions. In the glaciated fjords of Svalbard, large amounts of reactive Fe and Mn (oxyhydr)oxides are delivered to the sediment by glacial discharge, resulting in pronounced Fe and Mn cycling concurrent with microbial sulfate reduction. In order to investigate the diagenetic cycling of selected trace elements (As, Co, Cu, Mo, Ni, and U) in this system, we collected sediment cores from two Svalbard fjords, Van Keulenfjorden and Van Mijenfjorden, in a transect along the head-to-mouth fjord axis and analyzed aqueous and solid phase geochemistry with respect to trace elements, sulfur, and carbon along with sulfate reduction rates. We found that Co and Ni associate with Fe and Mn (oxyhydr)oxides and enter the pore water upon reductive metal oxide dissolution. Copper is enriched in the solid phase where sulfate reduction rates are high, likely due to reactions with H2S and the formation of sulfide minerals. Uranium accumulates in the solid phase likely following reduction by both Fe- and sulfate-reducing bacteria, while Mo adsorbs to Fe and Mn (oxyhydr)oxides in the surface sediment and is removed from the pore water at depth where sulfidization makes it particle-reactive. Arsenic is tightly coupled to Fe redox cycling and its partitioning between solid and dissolved phases is influenced by competition with FeS for adsorption sites on crystalline Fe oxides. Differences in trace element cycling between the two fjords suggest delivery of varying amount and composition of tidewater glacier (Van Keulenfjorden) and meltwater stream (Van Mijenfjorden) material, likely related to oxidative processes occurring in meltwater streams. This processing produces a partially weathered, more reactive sediment that is subject to stronger redox cycling of Fe, Mn, S, and associated trace elements upon delivery to Van Mijenfjorden. With climate warming, the patterns of trace element cycling observed in Van Mijenfjorden may also become more prevalent in other Svalbard fjords as tidewater glaciers retreat into meltwater stream valleys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Arctic fjord sediments of Svalbard receive terrestrial material from glacial runoff and organic matter from marine primary productivity. Organic carbon mineralization proceeds primarily through sulfate and iron reduction in the fjord sediment. The ongoing retreat of glaciers in the high Arctic is altering the input of glacial material to the fjords, with unknown consequences for the iron and sulfur cycles in the fjord sediments. We measured sulfate reduction rates in sediment cores and analyzed porewater geochemistry, then compared these results to long-term sediment incubations to determine the rates of iron reduction and sulfide oxidation in three glacially influenced fjords on the west coast of Spitsbergen, Svalbard. Despite an abundance of glacially-sourced Fe(III)-oxide minerals, active sulfate reduction took place throughout the sediment. Analyses of the sulfur and oxygen isotopic composition of porewater sulfate and sulfate concentrations suggest that sulfide produced from biological sulfate reduction is reoxidized to sulfate. Long-term sediment incubations indicated sulfide oxidation at all three stations. The rate of sulfide oxidation was controlled by both the rate of sulfate reduction and the quantity and reactivity of Fe(III)-oxides. In our experimental incubations, we detected a decrease in Fe(III) content of the 0.5 M HCl and ascorbate-extractable fractions, but not in the 6 M HCl fraction, indicating that the highly reactive Fe(III) fraction is utilized by microorganisms and serves as the oxidant for sulfide oxidation. Our results show that sulfide oxidation in glacially-influenced fjord sediments is a wide-spread geochemical process. Further warming will drive glacial retreat onto land, where sediment-laden glacial meltwater will be altered during flow through proglacial streams and lakes before entering the marine environment. Fjord sediments will likely become more sulfidic, as glaciers deliver less particulate, highly-reactive metal oxides to the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Ten representative actinobacterial strains isolated from marine sediments collected worldwide were studied to determine their taxonomic status. The strains were previously identified as members of the genus Salinispora and shared 〉99 % 16S rRNA gene sequence similarity to the three currently recognized Salinispora species. Comparative genomic analyses resulted in the delineation of six new species based on average nucleotide identity and digital DNA–DNA hybridization values below 95 and 70 %, respectively. The species status of the six new groups was supported by a core-genome phylogeny reconstructed from 2106 orthologs detected in 118 publicly available Salinispora genomes. Chemotaxonomic and physiological studies were used to complete the phenotypic characterization of the strains. The fatty acid profiles contained the major components iso-C 16 : 0 , C 15 : 0 , iso- 17 : 0 and anteiso C 17 : 0 . Galactose and xylose were common in all whole-sugar patterns but differences were found between the six groups of strains. Polar lipid compositions were also unique for each species. Distinguishable physiological and biochemical characteristics were also recorded. The names proposed are Salinispora cortesiana sp. nov., CNY-202 T (=DSM 108615 T =CECT 9739 T ); Salinispora fenicalii sp. nov., CNT-569 T (=DSM 108614 T =CECT 9740 T ); Salinispora goodfellowii sp. nov., CNY-666 T (=DSM 108616 T =CECT 9738 T ); Salinispora mooreana sp. nov., CNT-150 T (=DSM 45549 T =CECT 9741 T ); Salinispora oceanensis sp. nov., CNT-138 T (=DSM 45547 T =CECT 9742 T ); and Salinispora vitiensis sp. nov., CNT-148 T (=DSM 45548 T =CECT 9743 T ).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The Arctic has the highest warming rates on Earth. Glaciated fjord ecosystems, which are hotspots of carbon cycling and burial, are extremely sensitive to this warming. Glaciers are important for the transport of iron from land to sea and supply this essential nutrient to phytoplankton in high-latitude marine ecosystems. However, up to 95% of the glacially-sourced iron settles to sediments close to the glacial source. Our data show that while 0.6–12% of the total glacially-sourced iron is potentially bioavailable, biogeochemical cycling in Arctic fjord sediments converts the glacially-derived iron into more labile phases, generating up to a 9-fold increase in the amount of potentially bioavailable iron. Arctic fjord sediments are thus an important source of potentially bioavailable iron. However, our data suggests that as glaciers retreat onto land the flux of iron to the sediment-water interface may be reduced. Glacial retreat therefore likely impacts iron cycling in coastal marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...