GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-03
    Description: A 700‐year pre‐industrial control run with the MPI‐ESM‐LR model is used to investigate the link between the summer East Atlantic (SEA) pattern and the Pacific‐Caribbean rainfall dipole (PCD), a link that has previously been shown using ERA‐Interim reanalysis data. In the model, it is found that the link between the SEA and PCD is present in some multidecadal epochs but not in others. A simple statistical model reproduces this behaviour. In the statistical model, the SEA is represented by a white noise process plus a weak influence from the PCD based on the full 700 years of the model run. The statistical model is relevant to other extratropical modes of variability, for example, the winter North Atlantic Oscillation (NAO), that are weakly influenced by the Tropics. It follows that the link between the Tropics and the winter NAO is likely to undergo modulation on multidecadal time scales, as found in some previous studies. The results suggest that any predictability of the SEA, and by implication the NAO, based on tropical rainfall may not be robust and may, in fact, be modulated on multidecadal time scales, with implications for seasonal and decadal prediction systems.
    Description: The positive phase of the SEA is associated with warm summers in Europe. The figure shows the running correlation in 51 year windows between the SEA index and the corresponding tropical rainfall index in a long pre‐industrial model run. The link between tropical rainfall and the SEA exists only in some decadal epochs, shown by the green shading, implying that predictability of the SEA based on tropical rainfall can be expected to vary on multidecadal time scales.
    Keywords: 551.5 ; nonstationarity ; seasonal prediction ; summer East Atlantic pattern
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-12
    Description: A method using a linear shallow water model is presented for decomposing the temporal variability of the barotropic stream function in a high-resolution ocean model. The method is based on the vertically averaged momentum equations and is applied to the time series of annual mean stream function from the model configuration VIKING20 for the northern North Atlantic. An important result is the role played by the nonlinear advection terms in VIKING20 for driving transport. The method is illustrated by examining how the Gulf Stream transport in the recirculation region responds to the winter North Atlantic Oscillation (NAO). While no statistically significant response is found in the year overlapping with the winter NAO index, there is a tendency for the Gulf Stream transport to increase as the NAO becomes more positive. This becomes significant in lead years 1 and 2 when the mean flow advection and eddy momentum flux contributions, associated with nonlinear momentum advection, dominate. Only after 2 years, does the potential energy term, associated with the density field, start to play a role and it is only after 5 years that the transport dependence on the NAO ceases to be significant. It is also shown that the potential energy contribution to the transport stream function has significant memory of up to 5 years in the Labrador and Irminger Seas. However, it is only around the northern rim of these seas that VIKING20 and the transport reconstruction exhibit similar memory. This is due to masking by the mean flow advection and eddy momentum flux contributions.
    Keywords: 551.46 ; North Atlantic ; transport variability ; high-resolution model
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-24
    Description: Recent studies using reanalysis data and complex models suggest that the Tropics influence midlatitude blocking. Here, the influence of tropical precipitation anomalies is investigated further using a dry dynamical model driven by specified diabatic heating anomalies. The model uses a quasi-realistic setup based on idealized orography and an idealized representation of the land-ocean thermal contrast. Results concerning the El Niño Southern Oscillation and the Madden-Julian Oscillation are mostly consistent with previous studies and emphasize the importance of tropical dynamics for driving the variability of blocking at midlatitudes. It is also shown that a common bias in models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, excessive tropical precipitation, leads to an underestimation of midlatitude blocking in our model, also a common bias in the CMIP5 models. The strongest blocking anomalies associated with the tropical precipitation bias are found over Europe, where the underestimation of blocking in CMIP5 models is also particularly strong.
    Keywords: 551.5 ; blocking bias ; CMIP5 ; dry atmospheric general circulation model ; ENSO ; Midlatitude blocking ; MJO ; precipitation bias
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...